commodore Super‘pET computer
Waterloo microAPL

Dieses Handbuch wurde gescannt, bearbeitet und ins PDF-Format konvertiert von
Riidiger Schuldes

schuldes@itsm.uni-stuttgart.de

(c) 2003

ERRATA

The text does not differentiate between the APL characters ° (located on the J
key) and O (located on the O key). The characters ¥, ¢ and @ are obtained by
overstriking T, L and N, respectively, with ® and not O. The symbol for outer product is
((0.9’ not (13 o"’.

2. Page Line Present text Should be
50 3 TAX_RATE< TAX_RATE+21.4
27.4
62 last R<OB R+OB
65 6 R+ AOB R<AOB
73 15 (1lpA),(11pB) (11pB),(11pA)
74 13 (1ipA),(1LB) (1ipA),(11pB)
98 9 C«—2p"ABCDEF’ C—3 2p°’ABCDEF *
100 3 ClLl«<—="PQ" Cll;1<'PQ "’

3. Page 105: Symbol at 4A should be °.
Page 108: Symbol at A9 is a period (.).
Page 108: Symbol at C3 should be °.
Page 108: CRBCK should be code EF, not FF.

WATERLOO MICROAPL

Tutorial and Reference Manual

J. C. Wilson

T. A. Wilkinson

Waterloo Computing Systems Newsletter

The software described in this manual was implemented by Waterloo Computing Systems
Limited. From time to time enhancements to this system or completely new systems will
become available.

A newsletter is published periodically to inform users of recent developments in Waterloo
software. This publication is the most direct means of communicating up-to-date informa-
tion to the various user. Details regarding subscriptions to this newsletter may be obtained
by writing:

Waterloo Computing Systems Newsletter
Box 943,

Waterloo, Ontario, Canada

N2J 4C3

Copyright 1981, by J. C. Wilson & T. A. Wilkinson

Allrights reserved. No part of this publication may be reproduced or used in any form or by
any means—graphic, electronic, or mechanical, including photocopying, recording, taping
or information storage and retrieval systems—without the written permission of J. C.
Wilson & T. A. Wilkinson.

Disclaimer

Waterloo Computing Systems Limited makes no representation or warranty with respect to
the adequacy of this documentation or the programs which it describes for any particular
purpose or with respect to its adequacy to produce any particular result. In no event shall
Waterloo Computing Systems Limited, its employees, its contractors or the authors of this
documentation be liable for special, direct, indirect or consequential damages, losses, costs,
charges, claims, demands, or claim for lost profits, fees or expenses of any nature or kind.

PREFACE

APL is a powerful and concise notation which can be used to communicate algorithms
between people or between a person and a computer. The name APL is an acronym for ‘A
Programming Language,’’ which was thetitle of a book published in 1962 by the inventor of
APL, Kenneth E. Iverson. Since the late 1960’s the notation itself has remained relatively
unchanged, although features have been added to facilitate its use with the computer.

Waterloo MicroAPL for the SuperPET follows closely the IBM internal standard for
APL written by A. D. Falkoff and D. L. Orth and published in 1979 by the Association for
Computing Machinery. All of the standard language primitives are included. System
features are those consistent with a single user environment. Extensions include system
functions supporting file access, the reading and modification of memory, and the execu-
tion of machine language subroutines.

This manualis presented in two parts. The first part is a tutorial intended to introduce the
new user to the language and system features. The second part is a comprehensive reference
manual. Much of the reference manual should be read or skimmed by the new user,
although Chapter 6, which contains the detailed definitions of all the primitive functions
and operators, should be deferred until needed.

Acknowledgment

Many people have made significant contributions to the design of Waterloo MicroAPL
and so it is difficult to acknowledge everyone individually. The design is based upon ideas
evolved and proven over the past decade in other software projects in which these and other
people have been involved. The major portion of the implementation was performed by
Geno Coschi, Rick Gallant, Eric Mackie, Steve McDowell and Terry Stepien. Kay Harrison
and Paul Dirksen were very helpful in the production of this document.

J. C. Wilson
T. A. Wilkinson,

July, 1981.

Table of Contents

TUTORIAL SECTION
Introductionooiiunnennnniiiiiiiiiineiiirieneeanensaann 3
Getting Started.ccvveriirinerrereereenncecsecnncens 3
1. Simple ArithmeticFunctions.coiiiiiiiinerennnnnannnn 5
2, Storing Numbers.ooviiriiiiiiiiiiiiiiiitneerenenannsenes 7
3. ListsOf Numbers.ooiinentiiiiiiininnissereetesesccssssnnss 9
4. Manipulating CharacterData.cccoiiiiiiiiiiiieennnnenns. 13
5. Data CompaniSons.ccvuiiteeiceecnernsasocccscascssancnas 16
6. Tablesof Data.ooueiiiiiiiiiiiiiienineenensncessnoncans 18
T IndeXing. .o ooviiiniiiiirieeerieernrseneetatssssrasscnasanannens 21
8. CombiningSetsof Data.ccoiiiiiiieiiiiriencnssssannnns 24
9. Storing Instructionsas Functions.coeviiiivnrnannnn.. 26
10. Controlling the Sequence of Execution....................cc00eenn. 30

11. External Storageof DataasFiles.................ciiiiinnnaaa... 33

Table of Contents

REFERENCE SECTION
1. Keyboard and Sereem.ccoiiiiiiieaneeerccoecsecaassnns 39
Keyboard. ...coiiririoiiiiiiieiereencasacnsncccnasanss 39
“Overstruck’ Characters.ooceeerrverasnsenosecsncnnns 40
Unused Symbols.cooviiiiiiiiiiiiecnececvecssnsnnnes 40
10703110) U 37 J A 41
Full Screen Editingand the RETURNKey.........ccvvvvennnn. 41
2. The WorkspaceandSystemCommands.ccccevieevnnnn, 42
3. EXpressions........cccieieeeeencnnccncacccaassoscsccassosnnnas 46
L TV N 5 ¢\ 2. 7S 47
EMPLY AITAYS...coivuuieeersniseaussssssonssoscancncsnnns 48
Internal Representation: NumericData..............ce000eee. 48
Internal Representation: CharacterData..........cccvveeeenae. 48
Numeric Data: Input.......cocviiiiiiiiiiiinenencecrennnns 48
Character Data: Input......coooieeeriinriiiiinronsesaneans 49
V£ 9 -1 1) L1 49
5. Defined Functions.c.ovvuiiicinrerssnscesnsnnansscanns 51
The Header of a Defined Function.coveievieinnnanen. 51
-Function Name.ooiiiiiiiiiiirnreccarssascsccnonnens 51
Bs)77 11 . S5 PR 51
B S L 111111 ¢ A 52
sLocal mames.ttt iiiii i i iise i atena e 52
The BodyofaDefined Function........ccevveneenneennennenns 52
Y 2211111111 K. J AU NRN 53
-Branchesand Labels.......cocoiieiiennireeiennnnnescnnons 53
Pefininga Function.ccoiiiiiiiiiiiiiniiiiinnnnenans 55
Editing a FUNCHOM. .. e e v vveiineernnnenereencnasnnnaancnnns 55
Editing Hints. . ..oieeereenneeeenneccasscccossansnnncaane 56
Errors During FunctionEditing.ocoiieiiiniiiiiiiaen. 56
Effectof Localization.......ccovienceinirencasnncacansnenss 57
Executing Defined FUunctions.oovvieneiiieeccnsonnnnnnns 57
Suspension of Execution........c.cveeeeenenceennacennenenn 58
R T07o J00e) 114 ') IR 59

Trace Comtrol. . vvurveeiin i ieriieennecesennecnaannanes 59

Table of Contents

StateIndicator....occvvrreiiinnnneeerrereennranannenonnnnn 59

R i 1 11 5 60

6. Primitive FunctionsandOperators................ccceiiiiienennnn. 61
-Scalar FuncCtionS.....coveeeeeeaeerreenreneecacecncannanns 61
-—-MonadicScalar Functions.ccvveeceeenninneeeennannnnn 61
—Arithmetic Functions.cociiiiiiiiierannennnnns 62
—RandomFunction.coceeiienriieriencnnnenecaanns 63
—Logical Function.cccvveeriereiinnneseacecccnnnnnns 63

-—-Dyadic Scalar Functions.coveeeneereeneenennncanens 63
—Arithmetic Functions.coeeeeeiiiernrcnesacecanonss 63
—Logical Functions.cccovuiiiieiiinnnecenencnncecaanns 64
—Relational Functions........c.eeveieieeiecrnensoeacannans 64
—Trigonometric Functions.ccviieieinenrenennnan. 65

-Mixed Functions.ccoeeeieiniieieneeecenecncsanannss 65

ELO 3T £ 107 . 300N 76

7. System Variablesand System Functions.ccviiinrevncnnacns 80
System Variables.ccciiiiiiiiiiieinieiiterisinincennsns 80

System Functions........coveceeeceerenreaccacncascecoaanns 83

b, TR0 0y 1 - 0 87
Error Messages. .. cooveeniiervennasosseccsocssssnsscnnacss 87

9. FileS ..ottt ittt iiiieteeteeeecaaaaeaataaancaansaann 89
General ConCePLS . ..veeereeereceeeecuvenasssaaasooonanans 90
Filenames:.....cooiiiiiriieiiunenccosecncnnsansncacocanns 90

ReEPHES . e vveineerieneeeeeeaeecceaaasceasasssssascasannnn 90

General File Manipulation Functions:..........ccciviieennnn. 91

APL Sequential Files.ccoveeeneriiiiiiieecrencnnnnnns 92
BARE-Sequential Files.ccciniiiiiiiiinensccanecnnnns 93

Relative FileS. ..o iiiiernniiiiineceseanensoossocsncaanns 93
Appendix A. Tablesof Functions.ccoeiiiiniiieeeiincceenn. 95
Appendix B. System Commands, Variables and Functions................. 102

Appendix C. Character Code Tables............cciiiiiiiiienneninnns 105

WATERLOO MICROAPL

Tutorial Manual

J. C. Wilson

T. A. Wilkinson

Introduction

This Tutorial is intended to provide an introduction to the basic concepts and facilities of the
APL computer language asimplemented on the Commodore SuperPET. It is composed of a
number of short topics with accompanying notes which illustrate each point.

Getting Started

Before turning the machine on, make sure the switches are set at 6809 and R/W. Then turn
on the power switch on the SuperPET and disk (and printer if attached). The following
menu should appear.

Waterloo microSystems
Select:

setup
monitor

apl

basic

edit

fortran
pascal
development

Insert the system diskette in drive 1 and a data diskette in drive 0. Then select APL by typ-
ing apl and pressing return.

There will be a pause of about 1 minute while the APL language translator is loaded into
the machine. Then a message similar to the following will appear:

WATERLOO MICROAPL

COPYRIGHT 1981 BY WATERLOO COMPUTING SYSTEMS
LIMITED

CLEAR WS

Now the APL system is ready for use.

Tutorial 1

Simple Arithmetic Functions

The APL system manipulates numbers in the usual manner using the functions of addi-
tion (+), subtraction (—), multiplication (X), division (<) and exponentiation (*). Type
each of the following simple expressions on the keyboard hitting the RETURN key after
each one.

@ 5+6 (b) 3-1
11 2
© 18X3 (d) 3+4
54 0.75
(e) 2%3) 3—-4
8 1
(g) 2%.5
1.41421356
NOTES:
1 The symbols + — X <+ and * are called functions. Since each has 2 arguments

(one on the left and the other on the right) they are called dyadic functions.

Tutorial 1

2 Theresult of example (f) is a negative number. The symbol for negative () should
not be confused with the subtraction symbol (-—).
3 Numbers in APL are displayed with 9 digits of accuracy as in example (g).
Consider these examples:
) B—4+1
5
@) 8—(4+1)
3
G) 8—4+1
3
NOTES:
1 These expressions are more complex, each containing a number of functions and
arguments.
2 Example (h) uses a pair of parentheses to force the subtraction (§—4) function to
be evaluated before the addition.
3 Example (i) uses parentheses to force the addition to be evaluated first.
4 As shown in (§), expressions are evaluated from right to left if no parentheses exist
to indicate otherwise.
5 The numbers used in these examples are referred to in 4APL as scalars.

Tutorial 2

Storing Numbers

Numbers can be remembered by the APL system through the use of numeric variables
which are defined by the programmer.

@

®)

VISA+79.45

The assignment function («) is used to save the number 79.45 in the
variable VISA. It may represent an amount owed to a credit company.

The names given to variables can be composed of up to about 80
characters. The first must be a letter of the alphabet, while the remainder

can be any letter or number, or the underscore symbol (__).

VISA
79.45

The contents of a variable can be displayed by typing its name.

Tutorial 2

© VISA—50
29.45

MASTER<+301.15
VISA+MASTER
380.6

Variables such as VIS4 and MASTER can be used in expressions.

@ VISATMASTER
301.15

The greater of two numbers can be computed with the dyadic function
maximum (7).

© VISALMASTER
79.45

The lesser of the two numbers can be computed with the dyadic
mimimum (L).

Tutorial 3

Lists of Numbers

Many applications require manipulation of lists of numbers. APL has the ability to store
such lists of numbers in a single variable.

@)

()

©)

CARDS+79.45 30145 65 300.2
The above list of 4 numbers is stored (using <) in the variable CARDS.
Such lists are called vectors. This one could represent the various

amounts owed to 4 credit companies.

CARDS
79.45 301.45 300.2

The contents of a vector are displayed by typing its name.

pCARDS
4

The number of elements in or length of a vector can be computed using
the shape function (p).

This is an example of a monadic function since it has only one argument.

10

@

©)

®

4]

Tutorial 3

CARDS—-20
59.45 281.45 45 280.2

CARDS+2
39.725 150.725 32.5 150.1

The arithmetic functions (+ — X + *) can be used to perform calcula-
tions on all elements of a vector.

+/CARDS
746.1

Thesum of the elements in a vector can be computed using the plus reduc-
tion function (+/)

+/CARDSX.18
134.298

Since expressions are evaluated right to left, this multiplies each element
in CARDS by .18 and then totals the elements of the resulting vector.

(+/CARDS)+pCARDS
186.525

This computes the average of the elements in the vector CARDS.

[/CARDS
301.45

The function I/ is used to compute the maximum element in a vector.

L/CARDS
65

Similarly L/ computes the minimum element in a vector.

8
1 23 456 7 8

The monadic index generator function (¢) generates a vector of the in-
tegers from 1 to the value of the specified argument.

LIST OF NUMBERS 11

(h) 210

710

The monadic roll function (?) generates a random integer between 1 and
the specified argument (in this case 10).

3?10

3?10
276

The dyadic deal function (?) generates a vector of random numbers
without any duplicates. The left argument specifies how many numbers
are to be generated and the right argument defines the range.

It is often desirable to perform operations involving more than one list of numbers. In
these applications functions are performed on pairs of vectors.

® RATE<.18 .21 .14 .17

CARDSXRATE
14.301 63.3045 9.1 51.034

The first line creates a vector called RATE. It might represent the interest
rates charged by 4 credit companies. The second line multiplies each ele-
ment of RATE by the corresponding element in CARDS and displays the
result. Note that both RA TE and CARDS must have the same number of
elements (i.e., they must have the same length).

At this point we have created two vectors named CARDS and RATE. We may wish to
leave the system for a time and return later to continue. To preserve the data we have
created, it is necessary to save the contents of our workspace.

[0 YSAVE THISWS
SAVED 81/01/07 00:49:44 THISWS

This is a system command that causes the contents of the workspace to be
recorded on a diskette in drive 0.

12

(k)

U]

(m)

)

Tutorial 3
YLOAD THISWS
SAVED 81/01/07 00:49:44

This system command is used to restore the workspace to its state at the
time when the)SAVE was done.

)LIB

This system command will display a list of all the workspaces which have
been saved.

JDROP THISWS

Workspaces can be removed from the library by use of the)DROP com-
mand.

YWARS

This system command will display a list of all the variables defined in this
workspace.

13

Tutorial 4

Manipulating Character Data

As well as performing arithmetic calculations, most computer applications must
manipulate character data such as names, addresses, etc. APL treats such items of data as
arrays of characters.

(@ NAME<«'SMITH’

The character data enclosed between the quote symbols is assigned to the
character variable NAME,

NAME is a vector of § characters.

oNAME
5

The shape function (o) computes the length of a character vector.

14 Tutorial 4

) FIRSTNAME«<'JACK'
FULLNAME«<FIRSTNAME,NAME
FULLNAME
JACKSMITH

FULLNAME<«<FIRSTNAME," ',NAME
FULLNAME
JACK SMITH

The dyadic catenation function (,) is used to create longer vectors from

two shorter ones.
() NAME«'SMITH'

1tNAME

S
31NAME

SMI
T 3tNAME

ITH

The dyadic function take (1) can be used to select a number of elements
from the beginning or end of a vector.

(61 FIRSTNAME), NAME
JACK SMITH

The take function can be used to pad blank characters onto a character
vector.

MANIPULATING CHARACTER DATA 15

@

NAMET4]
T

An index or subscript enclosed in square brackets and following the
name of a vector indicates that the element in the specified position is to
be selected from the vector. In this case the 4th character of ‘SMITH' is
selected.

NAME[1 3 5]
SIH

If a list or vector of subscripts is specified, the corresponding elements
are all selected to form a new vector.

NAMET1+.3}
MIT

Using vector arithmetic and the index generator function, a substring can
be extracted from a vector.

16

Tutorial 5

Data Comparisons

A very important facility of any computer is the ability to determine the relationships be-
tween various elements of data, both numeric and character. APL uses the functions equals
(=), not equal (), greater than (>), greater than or equal (=), less than (<), less than or
equal (<), and (A), or (V) and not (~) to perform these comparisons.

Comparison of items in APL is accomplished by the evaluation of a function which is found
to be either True (represented by 1) or False (represented by 0).

@) VISA+79.45
VISA=0
0

When the expression VISA=0 is evaluated it is found to be false since
VISA is 79.45. Therefore the expression is given the value 0.

VISA>0

(VISA>0)A(VISA <100)

These conditions are true and each receives the value 1 indicating truth.

DATA COMPARISONS 17

®

()

CARDS+<179.45 301.45 65 300.2
CARDS>100
0101

This condition requires that each element of CARDS be compared to
100. The first and third elements are not greater than 100 and so fail the
test. They generate 0 or false. The second and fourth elements are greater
than 100 and generate 1 or true. Thus a vector is created which indicates
the result of each of the comparisons

+/(CARDS>100)
2

This expression computes how many elements of CARDS are greater
than 100 by creating a vector of 1’s and 0’s and summing.

Itis possible to use the vector of 0’s and 1’s produced in this way to select certain elements
from a vector creating a new vector.

@

1 0 1 0/CARDS
79.45 65

The dyadic function compression (/) is used to select specific elements
from the vector CARDS. Compression selects elements from the right-
hand vector which have a corresponding 1 in the left-hand vector.

(CARDS>100)/CARDS
301.45 300.2

The selection vector on the left of a compression function is often
generated by the evaluation of a condition. Here we select all elements of
CARDS which are greater than 100.

(CARDS>100)/1pCARDS
2 4

Here we determine which elements of CARDS are greater than 100 (they
are the second and fourth).

18

Tutorial 6

Tables of Data

Frequently, it is desirable to group items of data together in the form of a table or matrix.
The elements of a matrix are arranged in rows and columns.

@)

TABLE<2 3p1 2 3 4 5 6

TABLE
1 23
4 5 6
The first line uses the dyadic function shape (p) to create a matrix with 2
rows and 3 columns. The elements of the matrix are filled in from the vec-
tor on the right side. Note the order in which the elements are inserted in-
to the matrix. If there are not sufficient elements in the right hand argu-
ment to fill the matrix, then the elements are re-used as many times as
necessary.

pTABLE
2 3

The monadic function reshape (p) can be used to compute the number of
rows and columns in a matrix. This is called the shape of the matrix. Since
this is a 2-dimensional matrix, it is said to have a rank of 2.

TABLES OF DATA 19

Consider a consumer who has 3 credit cards which he uses for 2 different categories of
purchases (say business and personal).

®)

©)

CHARGES<2 3pl143 7.9 100.1 17.26 24 40

CHARGES
14.3 7.9 100.1
17.26 24 40

The first line creates a matrix with 2 rows and 3 columns and assigns 6
values from the 6-element vector on the right.

The second line displays the elements of the matrix.

+/[1JCHARGES
31.56 31.9 140.1

The plus reduction function along dimension [1} (i.e., down the columns)
causes a total to be produced for each column. This creates arow of totals
giving a total for each credit company.

+/[2]JCHARGES
122.3 81.26

Similarly, plus reduction along dimension [2] (i.e., along the rows)
causes a column of totals to be produced, one for each row.

+/+[2ICHARGES
203.56

This computes the sum of the rows and then sums the resulting vector to
give the total of all the numbers in the table.

20 Tutorial 6

@ PAYMENTS+<2 3p20 10 20 10 20 30

PAYMENTS
20 10 20
10 20 30

CHARGES—PAYMENTS
757 T2.1 80.1
726 4 10

This computes the balance owing in each account.

All the usual arithmetic functions { + — X < %) apply to
matrices.

+/[1JCHARGES—PAYMENTS
1.56 1.9 90.1

This computes how much we still owe each credit company.

Character data can be arranged in matrices or tables as well. The elements of a character
matrix are single characters.

© COMPANY+3 6p'VISA MASTERAMEX
COMPANY
VISA
MASTER
AMEX

The first line creates a matrix of characters called COMPANY. Each of
the 3 rows in the matrix is composed of 6 characters.

In general, matrices or arrays can have as many dimensions as the application demands.
They can be viewed as tables of tables.

21

Tutorial 7

Indexing

Previous tutorials have discussed vectors and matrices of numbers and characters. It is
sometimes desirable to perform operations on selected elements of these tables. A technique
called indexing or subscripting can be used for this purpose.

)] DATA<142 10 3 41.1 62
DATA
142 10 3 41.1 62

Here we have created a vector of § numbers.

DATAR)
10

DATA[l 3 4]
142 3 41.1

These lines display selected elements from the vector DATA. The
numbers in the square brackets are called subscripts. A subscript can be a
numeric scalar or vector.

Similar operations are possible with character vectors (see Tutorial 4).

22 Tutorial 7

() DATA[3]+ 1000
DATA
14.2 10 1000 41.1 62

Any element of a vector can be replaced by using this combination of in-
dexing and assignment.

The various elements of a matrix can also be accessed individually with indexing.

© CHARGES+2 3pl4.3 7.9 100.1 17.26 24 40
CHARGES
143 7.9 100.1
17.26 24 40

CHARGESI[2;3]

40
CHARGES[2;3}+0
CHARGES

143 7.9 100.1

17.26 24 0

Individual elements of a matrix (created as above) must be referenced by
two indices or subscripts, specifying the row and column of the element
respectively.

In the case of matrices, complete rows or columns can be referenced.

1) CHARGES[1;]

143 7.9 100.1
CHARGES[;3]

100.1 0
CHARGES[;2]+0
CHARGES

143 0 100.1

1726 0 0

Complete rows or columns of a matrix can be extracted or replaced using
subscripts.

INDEXING 23

©) COMPANY+3 6p'VISA MASTERAMEX
COMPANY
VISA
MASTER
AMEX

COMPANY]3;)
AMEX

COMPANYI;1]
VMA

COMPANY[2;}<"MCHG
COMPANY

VISA

MCHG

AMEX

Row and column extraction and replacement can also be done on
character arrays.

Tutorial 8

Combining Sets of Data

In Tutorial 4, the catenation function was introduced as it pertained to character vectors.
However, it has a more general application to vectors of all types.

(a) DATA«<10 13 47
MORE+«6 5 17

LOTS<DATA,MORE
LOTS
10 13 47 6 5 7

The catenation function creates a single vector from two other vectors.

®) CHARGES+2 3p14.3 7.9 100.1 17.26 24 40
CHARGES
14.3 7.9 100.1
17.26 24 40

COMBINING SETS OF DATA 25

NEW<«CHARGES,[1] 16 18 21

NEW
143 7.9 100.1
17.26 24 40
16 18 21

These lines show how the catenation function is used to add anew row to
the matrix ([1] means in the first dimension).

NEW<+<CHARGES,[2] 16.1 14.7
NEW

14.3 7.9 100.1 16.1

17.26 24 40 14.7

A new column can be added in a similar manner ({2] means the second
dimension).

© CATEGORY+2 8p'BUSINESSPERSONAL'
CATEGORY
BUSINESS
PERSONAL

CATEGORY,SCHARGES
BUSINESS 143 7.9 100.1
PERSONAL 17.26 24 40

The thorn symbol (@) specifies the monadic function format and is form-
ed by overstriking the symbols T and O. It converts the numeric datain the
matrix CHARGES to character data so catenation can be performed
with the matrix CATEGORY (row by row). The result is a new character
matrix.

CATEGORY,7 20CHARGES
BUSINESS 14.30 17.90 100.10
PERSONAL 17.26 24.00 40.00

The dyadic function format converts numeric data to character and for-
mats it. In this case, each number is converted to 7 characters with 2 digits
after the decimal point.

26

Tutorial 9

Storing Instructions as Functions

So far we have created various forms of numeric and character data in the workspace.
Each time functions were to be performed on that data, the correct APL statements had to
be entered. It is often desirable to create a list of such statements or instructions in the
workspace. These can then be invoked as a new function, thus avoiding re-entering all the

lines again.

(@
11

vSUM

This line opens the definition of a function (or procedure or program)
called SUM. We simply enter the statements we want to put in the func-
tion in response to the line-number prompt by the system editor.

)]
2]
i3]
[4]
51

VSUM
'ENTER A LIST OF NUMBERS'
X<0O @ GETNO’SFROMKB
‘SUM="0+/X A DISPLAYSUMOFNO'’S

'AVG =" B(+/X)+pX QA DISPLAY AVG OFNO’S
v

These lines define the function SUM.

STORING INSTRUCTIONS AS FUNCTIONS 27

Line [2] contains the symbol quad ([J). Later, when this list of instruc-
tions is being executed, it will allow vectors of numbers to be entered
from the keyboard.

Some lines contain the comment symbol (A) (N overstruck withO). Text
following this symbol provides documentation only.

The del symbol (V) is also used to close the function in line [5].

(b) SUM
ENTER A LIST OF NUMBERS
O:
1 7 18 4 72
SUM = 28
AVG = 5.6

A function can be executed by simply typing its name.

© vSuMiCiv
[0] SUM
[11 'ENTER A LIST OF NUMBERS'
21 X< A GETNO’SFROMKB
3] 'SUM = 'JB+/X @ DISPLAY SUM OF NO’S
[4] ‘AVG = 'JB(+/X)+ A DISPLAY AVG OF NO’S
pX

Example of listing a function.

In order to modify the statements of a function definition, it is necessary to open the func-
tion. Then changes can be made and the function closed.

28

@

Tutorial 9

vSUMIO]

This lists the function and leaves it open (i.e., the prompt for a new line
[51is displayed). Lines can now be added, inserted, modified or deleted.
The cursor movement and the INST and DEL keys can be used to change
existing lines. When all desired changes are made, the V symbol is used to
close the function.

The following are some examples of function editing:

@©

®

[4] 'AVERAGE="J(+/X)~ Q DISPLAYAVGOFNO’S
pX
[51 v

Example of replacing a line in a function.
[2.11 'THERE ARE’,®pX), ELEMENTS'
[2.2] Vv

Example of inserting a line in a function.
[a3]
4 v

Example of deleting a line from a function.
)FNS

This system command displays a list of all the functions which are defin-
ed in the current workspace.

VFA
[1) ‘ENTER A WORD'
[21 WORD<Q
[31 'THE WORD HAS',®pWORD),’ CHARACTERS'
4 v

This function illustrates how the input operation is used for character
vectors. The symbol used for character input is quote quad ((3) and is
formed by overstriking the symbols ’ and [1.

STORING INSTRUCTIONS AS FUNCTIONS 29

® VFB WORD
(11 N<+/'A’=WORD
[21 'THELETTERAOCCURS',®N),” TIMES’
Bl v

In this example, the word to be examined is passed as a parameter to the
function FBrather than being entered as input (as in (f)). It would be used
as follows:

FB'ACTUAL’
THE LETTER A OCCURS 2 TIMES

t) JERASE FB

The system command)ERASE is used to erase a function or a variable
from the workspace.

30

Tutorial 10

Controlling the Sequence of Execution

Functions are frequently very complex combinations of APL statements. It is usually
necessary to control the order of execution in these functions, repeating some statements a
number of times (loop structures) and selectively executing others (if structures). This
logical complexity is achieved in APL through the use of branching statements.

@

(1
2]
B3]
4
[5]
(61
71
(81

VCALC
'‘ENTER SOME NUMBERS'
DATA<O
TOTAL+<+/DATA
IF:—»(TOTAL <100)/ENDIF
‘TOTAL GREATER THAN 100'
ENDIF:
'TOTAL='OTOTAL
v

The function CALC computes and displays the total of a list of numbers.
If that total is greater than 100, it also prints a message to that effect.

Line [4] causes a branch to the line labelled ENDIF ([6]) when the condi-
tion TOTAL < 100is found to be true. The symbol — indicates a possible
branch.

CONTROLLING THE SEQUENCE OF EXECUTION 31

®)

The IF: inline [4] and the ENDIF: in line [6] are called Iabels and must
be unique within the function. They are followed by the colon (:). Rules
for forming label names are the same as those for forming variable names
(see Tutorial 2).

Itis considered good practice to indent statements (such as line [5]) which
are conditionally executed.

vCoMmP
[1) 'ENTER SOME NUMBERS'
[21 DATA<O
[31 TOTAL<+/DATA
[4} IF:—(TOTAL<100)/ELSE
[s] 'TOTAL GREATER THAN 100’
[6l —ENDIF
[71 ELSE:
[8] 'TOTAL NOT GREATER THAN 100’
[9] ENDIF:
[10] 'TOTAL='®TOTAL
[11y v

In this example, lines [5] and [6] are executed if TOTAL > 100 and lines
{71 and [8] are executed if TOTAL < 100.

The = ENDIF in line [6] causes an unconditional branch to line [9].

It is important to note that, while the APL language does not have the
structured language constructs, good program structure can be achieved
and revealed using controlled branching, well chosen labels and proper
indenting.

32

©)

@

(]
[2
31
4]
i3]
(6]
7
[8]
9

Tutorial 10

VADDER

RPT:
'ENTER SOME NUMBERS'
DATA<O
TOTAL+—+/DATA
—=(TOTAL<0)/END
‘SUM OF' ,®DATA),'IS’, @TOTAL)
—RPT

END:

v

The function ADDER repeatedly asks for a list of numbers for which it
displays a total. This is done with a loop composed of lines [1] through

1.

Line [5] causes the loop to terminate when the calculated total is less than

ZEro.

i
21
]|
[4
[51
(6]
g
(81
91
[10]
(11]
(12)
[13]
[14]
[15]

VTRANSLATE

'ENTER A NUMBER'

I<[]

CASE:—»(I=1 2 3)/CS1,CS2,CS3
‘NUMBER NOT IDENTIFIED'
-END

CS1:

'‘NUMBER IS ONE’
—-END
CS2:
‘NUMBER IS TWO'
—END
CS3:
'NUMBER IS THREE'
END:
v

Line {3] in this function performs a case test and selectively executes a
group of statements based on the value of I. If I=1 control transfers to
label CS1; if I=2 control transfers to label CS2; etc. If the number
entered is not 1 or 2 or 3, control passes to line [4].

33

Tutorial 11

External Storage of Data as Files

It is often desirable to transfer data between an APL workspace and external storage
areas known as files. The simplest form of such a file can be viewed as a list of items of data.
This is called a sequential file and is stored in the APL library and given a name.

@ "TEST CICREATE 6

A file named TEST is created and given the tie-number 6.

CHARGES+<2 3p14.3 7.9 100.1 17.26 24 40
CHARGES UIWRITE 6

The shape, rank, type and all the data of the variable CHARGES are
transferred to the file tied by number 6.

COMPANY<+«3 6p'VISA MASTERAMEX
COMPANY OWRITE 6

As before, all characteristics of COMPANY are written to the file.

34

®)

©

Tutorial 11

OUNTIE 6
The file tied by number 6 is released.
'TEST OTIE 4
The file named TEST is tied to the workspace with the number 4.
X+<UOREAD4
X

14.3 7.9 100.1
17.26 24 140

The variable X receives the shape, rank, type and all the data from the
value stored in the file.

X«<[READ4
X

VISA

MASTER

AMEX

Here the variable Xreceives all the characteristics of the next value stored
in the file.

CJUNTIE 4
The file tied by number 4 is released.

'TEST LITIE 4
'TEST CJERASE 4

Files can be removed from the library with the function (JERASE. The
file being erased must be currently tied to the workspace.

EXTERNAL STORAGE OF DATA AS FILES 35

@

©

VCRTFILEA
[1] ST+A[DCREATE3
[21 'ENTER LINES (EOF TO STOP)'
[3] RPT:
4] X<
[51 —(N/'"EOF =31X)/END
6} ST<XOWRITE3
n —RPT
[8] END:
[91 OUNTIE3
[10]v

The above function creates a sequential file of character vectors entered
from the keyboard. Line [1] creates the file using (JCREATE and gives it
the name specified by parameter A. It also states that this file will be
referred to as file number 3.

Items from X are written to the file in line [6] using OOWRITE with ST
receiving a string indicating the success or failure of the operation.

When the entire file has been written, line [9] releases the file with
OUNTIE and the file number becomes available for other uses.

VLISTFILEA
[11 ST<AO0OTIE3
[21 —(0+#pST)/0
[31 RPT:
[4] X<UOREAD3
[5} —(0#p0STATUS 3)/END
(6] OeXx
Y| —RPT
[8]1 END:
[91 OUNTIE3
[10]v

This function retrieves the list of items from the file whose name is in 4
and displays them on the screen. Line [1] attaches the specified file using
OJTIE and states that it will be referred to as file number 3.

Line [2] causes a transfer to line [0] (i.e., exit from the function) if an er-
ror occurs while attaching the file.

36

Tutorial 11

Line [4] uses (IREADtoretrieve one item from the file and assign it to X.
After this operation, the function (JSTATUS (in line {5]) is used to check
the result of the [JREAD. When all the items have been retrieved,
CIUNTIE is used in line {9] to release the file.

WATERLOO MICROAPL

Reference Manual

J. C. Wilson

T. A. Wilkinson

Waterloo Computing Systems Newsletter

The software described in this manual was implemented by Waterloo Computing Systems
Limited. From time to time enhancements to this system or completely new systems will
become available.

A newsletter is published periodically to inform users of recent developments in Waterloo
software. This publication is the most direct means of communicating up-to-date informa-
tion to the various users. Details regarding subscriptions to this newsletter may be obtained
by writing:

Waterloo Computing Systems Newsletter
Box 943,

Waterloo, Ontario, Canada

N2J 4C3

39

Chapter 1

Keyboard and Screen

Keyboard

Although the APL keyboard is similar in many ways to the standard keyboard, there are
some major differences.

“1T—1<]1s= —Iz >Sl#][vial—-]=+1s

1 2 | 3 4 5 6 71 8 9 0] +] x1¢

?) € P ~ 1) | 1] o * | - | 4

olwlE|R|T)|lY|lUu]lI1]lo]|lP] <]+

alrt i _]vlal-T -]V CI>]}

Als)| p|lFle]I]|K]L]U]1]¢{
C U 1 | 3

N
XU
19 [
<
&
24
R
~

40 Chapter 1
The capital letters A-Z are in their usual positions, but you do not press SHIFT to get
them. There are no lower case letters in the APL character set.
Many of the remaining characters are peculiar to APL and will be explained later.
""Overstruck’’ Characters
Besides the symbols shown on the keyboard diagram there are 18 other symbols that can be
created by typing two symbols on top of each other (e.g., by using the ‘cursor back’’ key).
The 18 overstruck symbols and the two symbols which produce each of them are shown in

the figure below.

Overstruck Symbol Combine

h s \" -~
A A -~
\/ v |
A a |
¢ o |
) o —
Q o N\
® (o] *
s v -~
0] 1 o
(1] T o
> A —
+ / -
o} o n
1] a
8 o =
é ’ .
I T 1

Unused Symbols

Some of the symbolsin the APL character set have no use in MicroAPL except as convenient
graphic symbols. These are

diamond $ c
left brace D n
right brace v «a
left tack) -
right tack I ¥

KEYBOARD AND SCREEN 41

Control Keys

Several of the keys control screen or cursor functions:
<= CRSR Moves cursor left ("’cursor back’’)
=> CRSR Moves cursor right
ﬂ CRSR Moves cursor up
CRSR Moves cursor down

TAB Moves cursor to next tab position

CLR Clears the screen and ‘"homes’’ the cursor
HOME Moves cursor to top left hand corner
RUBOUT *destructive backspace’’

EEOL Erase to end of line

INST Opens space under the cursor

DEL Deletes characters and closes text.

(Behavior is slightly different depending on whether there
are nonblanks to the right of the cursor or not.)

Full Screen Editing and the RETURN Key

Whenever the APL system expects you to enter something from the keyboard, you may use
the control keys to manipulate the screen in any way you wish, but nothing will be sent to
APL until you press the RETURN key. This is the only rule you need to remember: when
you press RETURN, the entire contents of the line the cursor was on (when you pressed
RETURN) getssent to APL. It doesn’t matter what may be elsewhere on the screen. Therule
applies equally whether you are in immediate mode or function definition mode.

42

Chapter 2

The Workspace and System Commands

The active workspace is the environment within which you deal with APL. The principal
contents of a workspace are variables and defined functions. When you begin an APL ses-
sion the active workspace is empty; the message CLEAR WS confirms this.

There are a number of system commands which permit you to manipulate workspaces.
System commands are distinguished by the fact that they all start with a right parenthesis.

)LIB
JLIB libid

The response is a listing of the directory for the diskette in drive 0 of the disk unit, or else for
the device designated by libid (see the System Overview Manual). For example, if you havea
disk unit whose address is 9, not the usual 8, then)LIB DISK9/1 will give you the directory
for the diskette in drive 1 of that unit. A lengthy listing can be interrupted by means of the
STOP key.

JCLEAR

The active workspace is replaced by one without any defined functions or variables and with
the workspace parameters ((170, [ICT, PP, (1PW, [JRL, [1LX) set to their default
values. The name of the workspace is set to null and is reported as CLEAR WS. The
previously active workspace is gone.

THE WORKSPACE AND SYSTEM COMMANDS 43

YWSID
The response is the name of the active workspace.
YWSID wsid

The name of the active workspace is changed to wsid. The response is its previous name. The
parameter wsid is often just a name, like CHESS, but it can designate a device as well (e.g.,
DISK/1.CHESS). See the System Overview Manual.

)SAVE

The active workspace is saved under its current name (unless the name is null).
)SAVE wsid

The active workspace is saved under the name wsid unless wsid doesn’t match the current
name and there already exists a workspace with the name wsid. (This is to prevent you from
inadvertently overwriting one workspace with another.) After the SAVE, the active
workspace will have the name wsid, whether it did before or not.

The response to a SAVE is a timestamp derived from the current setting of the system clock
(see LITS) together with the name under which the workspace was saved. The timestamp is
saved with the workspace and is reported on subsequent loading.

YLOAD wsid

The named workspace replaces the active workspace. The active workspace is gone. The
response is the timestamp saved with the workspace.

YCOPY wsid
JCOPY wsid names

The named objects (functions and variables) are copied from the named workspace into the
active workspace, replacing any objects therein having the same names. The parameter
names is a string of names separated by blanks. If it is omitted, all the variables and func-
tions (except objects beginning with {J) are copied.

YDROP wsid

The designated workspace is deleted from the library.

44 Chapter 2

)FNS
The response is a list of the names of the defined functions in the active workspace.
YVARS

Theresponse is a list of the names of the variables currently defined in the active workspace.
(Includes local variables if there are suspended functions.)

JERASE names

Names is a string containing the names of variables and functions separated by blanks. The
named objects are deleted from the active workspace. Response: normally none, but objects
which could not be erased are reported.

)SI

The response is the current state indicator (see Defined function execution).

)SINL

The response is as for)SI but with the local variables shown against each active function.
JOFF

APL is discontinued and control is returned to the microlanguage menu.

JSYMBOLS

The response is the current maximum number of symbol table entries.

)SYMBOLS number

This has the same effect as JCLEAR except that the maximum number of symbol table en-
tries is set to number.

THE WORKSPACE AND SYSTEM COMMANDS 45

YWSLIMIT

The response is the first memory address beyond the current end of the workspace.
YWSLIMIT number

The end of the workspace is changed to (number-1).

NOTE:

1 Program function key 3 (i.e., shifted *’3"’ on the numeric keypad) is equivalent to
typing the three system commands)FNS,)VARS and)SI.

46

Chapter 3

Expressions

An expression is a string of APL variables, functions, operators, numeric and character
constants, parentheses and bracketed index expressions.

As a general rule, an APL expression is evaluated from right to left, in the absence of
parentheses. Although at first this sounds peculiar it is in fact what we are used to when we
use the English language. For example, the sentence ‘“The equivalent resistance is the
reciprocal of the sum of the reciprocals of the given resistances.’”” makes sense (to an elec-
trical engineer!) when read from left to right, but as a prescription for computation it must
be used from right to left, starting with ‘‘the given resistances’’ and ending with the
specification of ‘‘the equivalent resistance.””

The equivalent APL expression is M«-++/+R . It, too, can be read from left to
right, but is executed from right to left.

Parentheses modify the order of execution in the usual way.

There are no priority rules such as the common convention that ““multiplication and divi-
sion are done before addition and subtraction.” For example 3X4+5 is 27, not 17. This
makes life much simpler in an environment such as A PL, in which there are dozens of func-

tions like X,+,+ and —.

Subexpressions containing operators, like 4.X are exceptions to the above.

47

Chapter 4

Arrays

Datain APL is not in general single quantities, but rectangular arrays of quantities. A table,
or matrix, like

2 3 74

50 6.7
is arectangular 2 by 3 array of numbers. We say that its type is numeric, its rank is 2 and its
shapeis2 3.

In general, an APL array has, besides its elements, a type (numeric or character), a rank
(the number of axes, or “‘coordinates,”” or ‘“‘dimensions’’), and a shape (a vector giving the
length of each axis).

A simpler array than a matrix is a list, or vector, like

-7 2 35

whose rank is 1 and whose shape is 4.

There is an even simpler array than a vector. This is a single quantity, or scalar, like 3.14
whose rank is 0 and whose shape is empty.

48 Chapter4

Empty arrays

Itis possible in APL to create an empty array, that is one having no elements at all. Therank
and shape of an empty array are not restricted except that the shape vector contains at least
one element which is zero.

In general, the number of elements in an array is the product of the elements in its shape
vector.

Internal Representation: Numeric Data

The elements of a numeric array are stored internally in a 5 byte floating point format. Thus
the 2 by 3 matrix used in the above example requires 6 X5 = 30 bytes of memory, plus the
memory necessary for the shape vector, the rank and the type, plus some further overhead.

MicroAPL does not take advantage of the compression which is possible when numeric
arrays are known to be boolean or integer.

Internal Representation: Character Data

The elements of character arrays are stored one per byte, plus the same overhead as for
numeric arrays. Thus the 3 by 5 matrix

ABCDE

FGHIlJ

KLMNO
requires 15 bytes plus overhead.

All 256 possible bytes are legal as the elements of character arrays.

Numeric data: Input

Numeric data elements are entered through the keyboard using the digits 0-9 and the sym-
bols “.”, [T S n’ and < E ”.

The digits 0-9 and the decimal point are used in the normal way.

The negative sign — (which is located above the “2’’ on the keyboard, not above the
““+’)and the *“ E*’ (which means ‘‘timestento the power. . .’’)aresymbolssimilarto the
decimal pointin that they are regarded as being part of the representation of the number and
not functions or operators.

ARRAYS 49

Examples:
T 2.35E2 is equivalent to ~ 235
3.14E 3 is equivalent to 0.00314

There must not be spaces within the representation of a number, and if E occurs, the
number following it must be an integer.

A numeric vector may be entered by typing a sequence of numeric elements separated by
spaces, all on a single line. Larger vectors, and arrays of higher rank, must be formed from
smaller ones by applying APL functions to them.

Character Data: Input

Character data elements which correspond to APL symbols can be entered through the
keyboard.

A character vector may be entered as a string of APL symbols without unintended spaces
(space is an APL symbol), all on a single line.

When a character vector is included as a character constant in an expression it must be
enclosed in quotes, and any quote symbol which the vector itself contains must be made into
two consecutive quote symbols. Thus the contraction of CANNOT would be input by
means of the string ‘CAN’ *T”. The length of the resulting vector is 5 and it contains one
quote symbol.

Fewer than half of all the possible byte values are interpreted internally as APL symbols.
An application requiring the manipulation of bytes in general will usually create the
character arrays by indexing {14V, not by getting them through the keyboard.

Again, larger vectors, and arrays of higher rank, must be formed from smaller ones by ap-
plying APL functions to them.

Variables

Every variable has a name which is a string of letters, digits and the underscore character
(). The first character of a name must be a letter. Names should be limited to 80
characters.

50 Chapter 4
A variable generally acquires a value (which is an array) by having one assigned or
specified. Thus

TAX__RATE+-
27.4

assigns the scalar value 27.4 to the variable called TAX__RATE.
There may be several assignments within a single APL expression. For example

A+« 1+B<0issometimes used to initialize A to 1 and Bto 0. This tends to reduce readability
and should usually be avoided.

51

Chapter 5

Defined Functions

The defined function in APL is similar to a ‘program’’ in other languages, and in fact we
will often use the term "‘program’’ interchangeably with ‘’defined function.’’

A workspace may contain a large number of defined functions and they need not bear any
particular relation to each other.

A defined function has a multiline representation. The first line, or header, establishes the
name and syntax of the function, the names used for the parameters and the local names.
The subsequent lines, or body, are the statements to be executed when the function itself is
executed.

The Header of a Defined Function.

-Function name
The names of defined functions are subject to the same rules as the names of variables.
--Syntax

The syntax of a function describes how the function name may appear in an expression.

52 Chapter 5

A function may have 0, 1 or 2 explicit arguments. The arguments of a function are always
data arrays. A function having no arguments is called niladic. A function having one argu-
ment is called monadic and the argument appears to the right of the function name. A func-
tion having two arguments is called dyadic and the arguments appear on either side of the
function name.

In addition to being niladic, monadic or dyadic, a function either produces an explicit
result or it doesn’t. This gives six syntactical forms to choose from for any given function.

No
Explicit Explicit
Result Result
Niladic F Z<F
Monadic F R Z<F R
Dyadic L F R Z~L F R
-Parameters

The variables represented by L, R and Z in the above figure are called parameters. These are
temporary names which exist for the purpose of function definition and execution only.
They indicate the syntax of the function and they serve as names by which you can refer to
the left argument, the right argument and the result in the body of the function definition.
The function name and parameter names must all be distinct, but they may match other
names in the workspace; that is, they have local significance only. If a result parameter is in-
cluded in the syntax of a function then during execution a value must be specified for that
variable or a VALUE ERROR will result when execution ends.

-Local names

It is often desirable to have other local names in defining a function. Names can be made
local by listing them in the header after the syntax, each name preceded by a semicolon.

Thus the header A«+P R ; X;B establishes a monadic function P with result 4, right argu-
ment R and local names X and B. (Usually X and B will be the names of variables, but they
may also be the names of functions to be established by [1FX.)

The name of the function being defined cannot be localized. The names of the parameters
and the labels in a function are implicitly local and should not appear in the local variable
list.

The Body of a Defined Function

DEFINED FUNCTIONS 53

-Statements

An APL statement is made up of any combination of the following components, in the order
given.

(1) A label; i.e., a name followed by a colon.

(2) A branch arrow (—).

(3) An expression.

(4) A comment; i.e., a lamp symbol (P) (formed by overstriking N and O)
followed by any string of characters.

name: - expression A characters
— v /
label comment
Figure$5.1 Statement

Execution of a statement consists of evaluating its expression, if it has one, and taking action
appropriate to the branch arrow, it there is one.

Li:
END: =0
-
Me=+/+R A EQUIV RESISTANCE
—5+H
REPEAT: —(N>I<I+1)/REPEAT A ADELAY
AHOLD FOR ARRIVAL
Figure 5.2 Examples of Statements

-Branches and Labels

The statements in the body of a function are numbered 1, 2, If a statement includes a
label, the value of the label is the number of the statement. The label is a local name. Care
should be taken not to assign the same label name to more than one statement in a given
function.

The statements of a function are normally executed in the sequence in which they occur.
This normal sequence can be modified bv the branch statement, that is, one containing a
branch arrow.

54 Chapter 5

The next statement to be executed after a branch statement is determined as follows:

(a) If the branch statement has no expression then execution ceases, the cur-
rent execution sequence is cleared off the execution stack and A PL awaits your
next request.

This statement is normally used manually to clear out the execution stack and
get rid of local variables, but it can also be written into functions and used to
abandon automatically the execution of a program when a fatal error is
discovered.

(b) If the branch statement has no expression then the value of the expression
must be either (1) an integer scalar, or (2) a vector whose first element is an in-
teger, or (3) an empty vector.

In the first two cases the integer referred to is the number of the next statement
to be executed. If the integer is not a valid statement number then execution of
the function terminates and control returns to whatever caused execution to
start. In particular, O is not a valid statement number and is often used to cause
termination of the function.

In the third case, the empty vector, no branch occurs: the next statement to be
executed is the one following the branch statement in normal sequence.

A very common form for a ’’conditional branch’’ is exemplified by
—({I<N)/INVERT

which can beread as ‘if /<Nthen goto INVERT . INVERT is assumed to be
the label on some statement in the function.

A *'case’’ construction can be obtained by

—(I=1 2 3)/CASE1,CASE2,CASE3
or by

=({(XN)="1 0 1)/NEGATIVE,ZERO,POSITIVE
where as before the names to the right of the compression (/) symbol are
assumed to be labels.

The branch statement is extremely powerful and must be used with restraint, or you will
create programs which are very difficult to understand.

DEFINED FUNCTIONS 55

Defining a Function
A function can be defined or established in a workspace in one of three ways.
(1) Itcanbecopied from a stored workspace using the YCOPY system com-
mand.

(2) It can be established by means of the system function (IFX.
(3) It can be established by the use of the ""del’”” function editor.

The first two features are described elsewhere.
Tousethe "del’ editor to define a function, enter function definition mode by typing the
character del (V) followed by the header of the function. The editor will prompt with a line

number in brackets. Enter the statements of the body of the function one by one.

To leave function definition mode, end a line, other than one containing a comment, with
adel (V), or enter del in response to the line number prompt.

Editing a Function

To use the editor to revise the definition of an existing function, enter V followed by the
name of the function. You cannot redefine the header this way: the name only is acceptable.

The name of the function may optionally be followed immediately by an editing com-
mand. Once you are back in function definition mode, every line you enter must be an

editing command.

Following is a list of the possible editing commands.

Editing command Meaning

(1)) Display the existing definition.

[CIn] Display the function, starting at line n.

[n(d] Display line n only and leave the cursor on the line.

[n] text Replace the contents of line n by text. (Note that no change will

occur if text is blank. This is a safety measure.) The number n need
not be an integer: if n falls between two existing lines, then the new
line is inserted between those lines.

[An] Delete line(s) n (n may be a vector).

56 Chapter 5

It can be seen that the bracketed line number prompt that the system displays is merely an
editing command. It is not necessary to delete it or move to a new line to enter a different
command: the system ignores all but the last recognizable editing command on a line.

During the editing process for a function the lines of the body are not renumbered 1,2,...
immediately after deletion or insertion. Renumbering occurs after you leave function
definition mode.

For editing purposes only, the header is considered to be line 0, and it is displayed that way
when [(J] is executed. The entire header may be changed if desired, including the function
name.

Editing Hints

Keep functions short. Functions longer than the screen (about 20 lines) are inconvenient to
deal with.

When editing an existing function, display it immediately and then use the screen editing
controls to adjust the definition of existing lines. Don’t forget to strike RETURN when you
are satisfied with a line; otherwise your changes will not be recorded.

Conversely if you have accidentally made garbage of a line of the function, don’t hit
RETURN, but use the cursor to get to a new line and ask for a redisplay. The garbage will
not be recorded.

Program functionkey 1 (i.e., shifted *’1’* on the numeric keypad) during function editing
will close the function definition, then immediately reopen and display it. The effectisto get
a clean, renumbered listing of the function.

Errors During Function Editing

The editor detects a variety of errors, all of which are reported as DEFN ERROR. Here are
some of the possible causes.

—On Opening a Function Definition
—The name of the intended function is already in use as a variable.
—Attempt to respecify the header of an existing function.
—Header is syntactically invalid.

—Invalid function name (e.g., *'3D"").

DEFINED FUNCTIONS 57

—You were already in function definition mode.

—Function is pendent. (Clear the state indicator.)

—Function name in locals list.

—Function name and parameter names are not all distinct.
—During Editing.

—Invalid editing command.

—Attempt to edit the header of a suspended or waiting function.

If you get a SYNTAX ERROR during editing you were probably not in the editor at all.
You may have executed V FILI}V instead of V F][]], for example.

Effect of Localization

All names appearing in the header (except the function name itself), together with the names
of all labels, are local names. Local names have only the significance assigned to them in
their own function regardless of their significance in the calling environment, that is, before
execution of the function began. The effect of this is that during the execution of the func-
tion (and even if the function becomes suspended) there is no way to “’see’’ the original value
associated with a localized name. The original value is restored when execution of the func-
tion terminates.

Any name which is not local has the same significance that it had in the calling environ-
ment. One of the effects of this is that a function cannot ‘"hide’’ the value of its variables
from any function which it calls.

Executing Defined Functions

In immediate execution mode, if you type a statement and press RETURN the statement is
executed immediately. If, during the execution of the statement, the name of a defined func-
tion is encountered, then that function is executed. This in turn involves executing
statements (those of the function) and any functions that they refer to, and so on. This pro-
cess normally ceases only when the statement you originally typed is completely executed. If
the statement has an explicit result and the last thing executed was not an assignment (+) the
system displays the result on the screen. It then awaits your next command.

58 Chapter 5

Suspension of Execution

The execution of a defined function will stop prematurely if an error is encountered, if the
STOP key is pressed, or through stop control (see below). The system returns to immediate
execution mode.

The function whose execution was interrupted is said to be suspended and all those func-
tions which led to its execution and are not yet completed are referred to as pendent. A
dyadic function whose left argument is being evaluated is said to be waiting.

The suspended function can be restarted by entering a branch statement. In the case of
stop control, no part of the line has been executed and the function can be safely restarted
with a branch to the line number in question. In the other two cases the point of interruption
is indicated approximately by a caret (A). Whether the function can be restarted (even after
the error, if any, has been fixed up) normally requires some analysis.

A convenient way to restart a suspended function is to enter +[1LCsince [1LCis a vector
whose first element is the line number at which execution is to be resumed.

In the suspended state, most normal activities are possible, including the evaluation of ex-
pressions and the execution of functions, but there are some limitations.

1. All names have their local significance (that is, the significance they
had in the suspended function).

2. Space may be limited by the inclusion in the workspace of the local
variables of the suspended and pendent functions.

3. Pendent functions cannot be edited.

4. The header of a function which is suspended or waiting cannot be
edited.

5. Functions which are suspended, pendent or waiting cannot be erased.

6. The workspace can be saved in this condition but it may not be subse-

quently loadable by any different release of the MicroAPL system.

NOTE: There may be ways, not prohibited by these limitations, to create an inconsistent
workspace by manipulating halted functions.

DEFINED FUNCTIONS 59

In general it is best to ""punt’’ (see below) after suspension of function execution unless
you have a good reason not to. One good reason not to is if you are not sure what caused the
error and wish to investigate further by listing variables or executing subexpressions of the
onein error. It is sometimes useful in this case to save a copy of the workspacein its suspend-
ed state (under a "‘temporary’’ name!) before doing anything that might make the trail hard
to follow.

Stop Control

By the use of the system function CISTOP (see ‘*System Functions’’) a function can be
caused to stop in a suspended state just before executing a given line or lines. The function
may be normally restarted safely by branching to the line number of the stop.

Trace Control

A trace of a function lineis a display generated on the screen immediately after the execution
of the line. The system function C1ITRA CE is used to determine which lines are to be traced
(see “'System Functions'’). Execution of the function is not halted. The display generated by
atrace consists of a TRACE SET message, the line number and the value, if any, of the ex-
pression in the statement.

State Indicator

The system command)SI causes the state indicator to be displayed. The state indicator
shows all the suspended (marked with an asterisk) and pendent functions. (It does not show
the waiting functions.) The order of the display is the same as for [JLC, that is, most recent
first.

For example:
)SI
H[3] *
G[7}
F12] *
aLc
372

It is good practice to display the state indicator periodically to see that it is clear, and it is
especially inportant when something mysterious seems to have happened: a function has
disappeared, for instance, or an unusual WS FULL occurs.

60 Chapter §

lIPuntll

The statement — is sometimes called a ""punt’’ (the football term). It may be used as a line of
adefined function, as theresponse to a [l input request, or inimmediate execution mode. Its
effect in each caseis the same: the currently executing function, or the latest suspended func-
tion, is terminated, together with all the pendent functions which led to its execution.

The state indicator may always be cleared by executing punt sufficiently many times.

61

Chapter 6

Primitive Functions and Operations

The term ""primitive’” refers to things that are available as part of the system without the
necessity of defining them.

The primitive functions and operations all have APL symbols reserved for them. Almost
half of the symbols used for primitive functions actually represent two functions, one
monadic and the other dyadic. Which is intended in a given expression must be determined

from the context: the dyadic function is denoted if possible, i.e., if there is a left argument.

NOTE: The symbol «— used in the following is not APL notation. It means ‘‘is
equivalent to."’

-Scalar Functions

Scalar functions are functions defined on scalar arguments, yielding a scalar as aresult, and
which are extended to array arguments element by element.

--Monadic Scalar Functions
The monadic scalar functions are shown in Table A.1.

Each of these functions has the same syntax as the familiar ‘'negative’’ function.

62

Chapter 6

Each takes only numeric arguments. Each can be applied element by element to an array
argument, yielding an array of the same shape.

---Arithmetic Functions

R<+B

R<-B

R<XB

R«-=+B

R<\B

R<IB

R<*B

R<®B

R<|B

R<{¢B

R<OB

(Conjugate or indentity) Theresult is the same as theargument. +B «<— 0+B
«-> B

(Negative) —B «<— 0—B

(Signum) XBis~ 1,00r 1 according to whether Bis negative, zero or positive.
XB «— (B>0)—(B<0)

(Reciprocal) +B «— 1+ B. B must not be zero.
(Floor) LB is the greatest integer not greater than B. This result is modified in
accordance with the system’s comparison tolerance parameter. For example,
if the comparison tolerance has its default value of about 1E~ 8 then
17.99999999 « — 8. Formally, floor has the following definition.
VR<FL X ; N
(1] N—(XX)X10.5+]|X
[2l R-N-(N-X)>0OCTXII|N

v

(Ceiling) I B is the least integer not less than B. Again the result is modified in
accordance with comparison tolerance. (B «+— —L—B

(Exponential) * B is e raised to the B’ th power, where e is the base of natural
logarithms (approximately 2.71828).

(Natural Logarithm) The inverse of the exponential function. ® * B «- B
+—» * ®B, Bmust be greater than zero.

(Magnitude) The absolute value of B. |B «— BI(—B).

(Factorial) § B <~ BX(B—1)X(B—2)X...X2X1and 0§ «<— 1. Bmustbea
non-negative integer.

(Pi times) Pi times B where Pi is approximately 3.14159.

PRIMITIVE FUNCTIONS AND OPERATIONS 63

-—-Random Function
R<B (Roll) ?Bis arandom choice from the integers B. Since 1B is dependent on the
current index origin, so is 2B8. B must be a positive integer.
---Logical Function
R~ B (Not)BmustbeOorl. ~01«<—=>10
--Dyadic Scalar Functions
The dyadic scalar functions are shown in Table A.2.
Each of these functions has the syntax R« A f B like the familiar *’plus’* function. Each
takes only numeric arguments, except = and ¥ which permit both numeric and character

arguments. Each is extended to nonscalar arguments according to the following rules.

a) If A and B are the same shape, the function f is applied to corresponding
elements of 4 and B to give a result of the same shape;

b) else, if A and Beach have only one element, then the result has one element
and is of shape equal to the shape of the argument having the greater rank;

¢) else, if one argument has only one element then it is extended to be the same
shape as the other argument;

d) else the arguments are not conformable and an error is reported.
—-Arithmetic Functions
R<A+B (Plus) Addition.
R—A-B (Minus) Subtraction.
R<AXB (Times) Multiplication.
R<A+B (Divide) Division. B must not be zero unless A is as well, and then 0+0 «— 1.
R<A\B (Minimum) A LB is the lesser of A and B.

R<ATB (Maximim) AlB is the greater of 4 and B.

64 Chapter 6

R«A*B (Power) A4 raised to the power B. 4 * B is not defined if A=0and B<0 or if
A<0and Bisnot an integer. 0 * 0<——1

R«A®B (Logarithms) A®B is the base A logarithm of B i.e., the power to which A
must be raised to give B. A ® B——(®B)-+(®A). A and B must be positive,
and if A=1 then B=1.

R<A|B (Residue) A|B is the remainder when B is divided by A. 0|B «— B. If A#0
then R «— B—AXLB-+A. R will always lie between 0 (inclusive) and A4 (ex-
clusive) regardless of whether A is positive or negative.

R<AlB (Binomial coefficient) This is often read ‘4 out of B'. One interpretation of it
is the number of combinations of B things taken A4 at a time. A must be anon-
negative integer. B may be any number.

AéB——1 ifA=0
BX(B-1)X..X(B+1—-A)+(§ A) ifA>0

---Logical Functions

R<AAB (And)

R<AVB (Op)

R<AAB (Nand)

R<A¥B (Nor)

In each case A and B must be 0 or 1. (See Table A.2)

---Relational Functions

R<A<B (Less)

R—<A=<B (Lessorequal)

R<A=B (Equal)

R<A=B (Greater or equal)

R<A>B (Greater)

R<A#B (Notequal)

In each case R is 1 if the relation holds, 0 if it does not. 4 and/or B can be of
type character only in the case of = and #.

The relational functions on numeric arguments are all subject to comparison
tolerance. A is considered ("'tolerantly’’) equal to B if and only if ((A—B) <
(Comparison tolerance) X(|A)I(| B).

The other five relational functions then use this version of equality in their
definitions.

PRIMITIVE FUNCTIONS AND OPERATIONS 65

The comparison tolerance may be changed from its default value of about
1E 8 by means of the system variable JJCT.

The effect of comparison tolerance 1s to make 9=(3 *2) «— 1 for example
even though (3*2)—9 «— 3.725E" (9

-——Trigonometric Functions

R+<AOB

This is a family of related functions. The integer A selects the family member.
See Table A.2 for details.

-Mixed Functions

The real power (and uniqueness) of APL is contained in the mixed primitive functions. The
mixed functions deal with, and are defined on, arrays as a whole and not element by ele-
ment. Their results have shapes which often differ from the shapes of their arguments. The
mixed functions are not generally arithmetic in nature.

The mixed functions are shown in Table A.4.

R+<pB

R+,B

R<ApB

R<0OB
R<oB
R<[VIB
R<o[V]B

(Shape) pB is the shape vector of the array B.

(Ravel) ,B is the vector whose elements are those of B taken by indexing se-
quence (that is, with the last index varying most rapidly). If Bis a scalar, ,B s
the vector whose sole element is B. If B is a vector, ,B is identical to B.

(Reshape) ApB is an array of shape ,4 whose elements are taken sequentially
from ,Brepeated cyclically as required. 4 must be a nonnegative integer scalar
or vector, or an empty vector. (10)pB is the scalar (,B)[1].

Reversed Bis an array identical to Bexcept that the elements along the last axis
are in reversed order. If B is a vector, then ® B turns B end for end.

The function© isidentical to® except that the relevant axis is the first, not the
last.

The axis operator (see Operators) can be applied to either § oro to designate
the relevant axis,

66

R<AbB
R<AoB

R<AD[VIB

Chapter 6

R+ Ao[V]B (Rotate) If A is an integer scalar or one-element vector and B is a vector, then

R<A,B
R<A,[V]B

A® Bis a vector identical to B except that if 4 >0 then the elements of B have
been rotated cyclically left 4 places. If A <0 the rotation is to the right |4
places.

For higher dimensional arrays the shape of A must be™ 1{pB and then each
element of A specifies the amount to rotate the corresponding vector along the
last axis of B.

For example,
Me—-A B C D
E F G H
I J KL
10" 1¢ M« B CDA
E F G H
L I J K

As in the monadic case, the function© is identical tod except that the relevant
axis is the first, not the last. The axis operator (see Operators) can be applied to
either ® or© to designate the relevant axis.

(Catenate) This function is used for gluing together two arrays to form a larger
array.

If A and B are vectors (or scalars), A, B is the vector whose elements are those
of A followed by those of B.

Matrices are catenated along the last axis of each by imagining them to be writ-
ten side by side and then glued together along the adjacent sides. (The last axis
is the one which is extended.) Obviously only the first dimension of each must
match.

The same idea extends to higher dimensional arrays. For example, a 3X4X5
array may be catenated to a 3X4X2 array of the same type to form a 3X4X7
array.

PRIMITIVE FUNCTIONS AND OPERATIONS 67

R<A,[V]B

Arguments which differ in rank by 1 are also permitted, so that for instance a
vector may be catenated to a matrix by treating the vector as if it were ann X1
matrix. Again this concept extends to higher dimensional arrays, so thata3X4
array may be catenated to a 3X4 XS5 array to form a 3X4X6 array.

The axis operator (see Operators) can be applied to catenate to designate some
axis other than the last as the axis to be extended. The axis number ¥ must
designate one of the axes of the higher rank argument. For example, if the in-
dexoriginis 1, and 4 and B are matrices, then 4,{2}Bis equivalent to A, B, and
A, [11B corresponds to gluing the bottom edge of A to the top edge of B.

Unless one of the arrays is empty they must be of the same type, i.e., both
numeric or both character.

A scalar argument is extended as necessary.

(Laminate) Lamination is analogous to gluing two essentially 2-dimensional
sheets of wood together to form a 3-dimensional board.

In APL we can join two identically shaped (say 5X7) matrices together to form
a 3-dimensional result. The new axis of the result will have length 2, but we
have a choice where we locate it in the new array. We can have the result of
shape2X5X7or 5X2X7 or 5X7X2depending on whether we put the new axis
before the first of the original ones, between the first and second, or after the
second.

If V is not an integer then R« A,[V]B specifies that 4 and B are to be
laminated, not catenated. And the value of V relative to the original axis
numbers specifies where the new axis is to go. Thus if the index originis 1, the
A and B are 5X7 matrices, then 4,{0.5]Bis 2X5X7, A,[1.5]Bis 5X2X7 and
R« A,[2.5]Bis 5X7X2. Inthelast case, forexample, R[;;1] —— 4 and R[;;2}

«-B.

The exact value of V doesn’t matter, only where it stands relative to the
original axis numbers.

Both arguments must be of the same shape unless one is a scalar, in which case
it is extended. Both arguments must be the same type (numeric or character)
unless they are empty.

68

R<AwB

R<QB

R+<A[B;C;..

Chapter 6

(Dyadic Transpose) This function provides a way of permuting the axes of an
array (and also of obtaining diagonal sections of an array).

Suppose B is a 3-dimensional array and we wish to form from it the
3-dimensional array R such that R[];J;:K]=B{[K;I;J] for all values of K, Tand J
that are valid subscripts for B. In APL thisisexpressed R<3 12 ®B. Theleft
argument of Q is found by inspecting the subscripts K;I;J of Bin the equation
defining R[I;J;K]. The first subscript of B, i.e., K, isthe 3rd subscript of R, the
second, I, is the first of R and the third, J, is the second of R. Hence 312.

We can also take a "’diagonal section’’ through an array. For example, we can
derive from B a 2-dimensional array S such that S[I;J]=B[J:I:J]. In APL this
is S«-2129B. The rule for finding the left argument is the same as above.

If Bis amatrixthen 2 1 QBisthe conventional transposeof Band 1 1 QBisthe
main diagonal.

(Transpose) This function reverses the order of the axes of its argument. For-
mally, B «— ({0 1ppB) QB. In particular, if Bis a matrix then QBis the con-
ventional transpose of B.

Dl

(Indexing) Elements may be selected from an array A to form anew array R by
means of an index expression in square brackets. Anindex expression for ann-
dimensional array A is a list of n expressions separated by semicolons. The
value of each expression must be an array (e.g., B) each of those elements is a
permissible index along the corresponding axis of A. Each indexing array may
be of any rank, although scalars and vectors are the most common.

Any of the constituent expressions of an index expression may be omitted en-
tirely; its value is taken to be the entire index vector for that axis of A.

The shape of R is the catenation of the shapes of the indexing arrays. In par-
ticular if A is a vector then the shape of A[B] is the shape of B. Technically, for
higher rank index arrays,

A[B;C;...;D] <= ((0B),(0C)s...,(bD)pAI(B);(,C);..;(-D)}

The use of a pair of symbols, [and] and what amounts to a vector of arrays as
one of its arguments, distinguishes indexing as an exception to the A PL syntax
rules. Nevertheless indexing is still conceptually a dyadic function of an array
and an index.

PRIMITIVE FUNCTIONS AND OPERATIONS 69

AlB;C;...;D]+R

R<A1B

(Indexed assignment) An indexed subset of the elements of an existing array A
may be replaced by the elements of the array R.

[B;C;...;D] must be a valid index expression for 4 and the shape of
A[B;C;...;D] must match the shape of R, except that axes of length 1 are ig-
nored.

If R is a one element array of any rank, it is extended as necessary.

A and R must be of the same type unless the index expression selects no
elements of A.

(Take) This function selects elements from the beginning or end of a vector B
and it can also be used to ""pad’’ B out to a given length with zeros (if B is
numeric) or blanks (if B is character). In general it can be thought of as selec-
ting a ""corner’’ of an array B.

A must be an integer scalar or vector, or an empty vector. B can be an array.
Unless Bis a scalar, there must be one element of A corresponding to each axis
of B.

The shape of A1B is the vector whose elements are the absolute values of those
of A that is |,A.

If Bis a vector (and therefore A is a scalar or a one element vector) then there
are four cases.

(@) (pB)<A. R is B catenated with (pB)—A zeros (or blanks).
(b) (0=A)A(A<pB). R is a vector of the first 4 elements of B.

©) ((—pB)sA)N(A<0). Risavector of the last |4 elements of
B.

(d) A<—pB. Ris —(A+pB) zeros (or blanks) catenated with B.

70 Chapter 6
The following diagram summarizes these cases.
pad B take |4 elements take A elements pad B
onleft from end of B . from beginning of B on right
—pB 0 B A

If Bis of higher rank then each of the axes is treated as in the vector case, using
the corresponding element of A.

R<AlB (Drop) This function is a variant of take. It also selects a “’corner”’ of the array

B but it does it by deleting rows and columns rather than by keeping them.
The conditions on A and B are the same as for take.
If B is a vector there are four cases as illustrated in the following diagram.

drop all drop |4 elements drop A elements drop all
of B from end of B) from beginning of B of B

T -+ T

>
pB 0 pB A

If Bis of higher rank then each of the axes is treated as in the vector case, using
the corresponding element of A.

R<A/B

R<A+B

R<A/[V]B

R+ A-+4[V]B (Compress) This function provides selection based on a boolean vector A of

1’'sand 0's.
B may be any array and A4 is a boolean scalar or vector, or an empty vector.

A scalar or one element vector A is extended to conform to B and a scalar B is
extended to a vector conforming to A.

The number of elements of A (after extension) must equal the length of the last
axis of B (after extension).

If B is a vector, the A/B is the vector consisting of those elements of B cor-
respondingtothe 1'sin A. It follows that the length of A/Bisthe numberof 1's
in A.

If B is of higher rank, then the compression is applied to the vectors along its
last axis.

PRIMITIVE FUNCTIONS AND OPERATIONS 71

R<ANB
ReAx

A-+Bisidentical to A/Bexcept that the compression is applied to the first axis,
not the last.

The axis operator (see Operators) can be applied to either / or -+ to designate
the relevant axis.

R—AN[V]B
Re«Ax[V]B(Expand) This function opens out the array B by inserting zeros (or blanks)

based on the boolean vector A. It is a partial inverse to compression in the
sense that A/AN\B «— B.

B may be any array and A is a boolean scalar or vector, or an empty vector.
A scalar B is extended to a vector of length equal to the number of 1’s in 4.

The number of 1's in 4 must equal the length of the last axis of B (after exten-
sion).

If Bisavector, then 4 \ Bisthe vector whose length is that of 4 and consisting
of the elements of B placed in order wherever 4 has 1's and zeros (or blanks)

wherever A has 0’s.

If Bis of higher rank then the expansion is applied to the vectors along its last
axis.

A><Bisidentical to A \ B except that the expansion is applied to the first axis
instead of the last.

The axis operator (see Operators) can be applied to either \ or =« to designate
the relevant axis.

(Index generator) (B is a vector of B consecutive ascending integers, the first of
which is the current index origin.

B must be a nonnegative integer scalar or other one element array.

0 is a common expression yielding an empty numeric vector.

72

R<AB

R<AeB

R—AB

R<V¥B

Chapter 6
(Index of) AuB is a ""search’’ function which finds the first occurrence in 4 of
cach element of B.
A can be any vector. B can be any array. A.B has the same shape as B.
If Bis a scalar then A.B is the index (relative to the current index origin) of the
first occurrence of Bin A. If Bdoesn’t occur in A at all, then AB is OIO0+pA

(i.e., the first index beyond the range of A).

If Bis an array of higher rank then each element of ABis theleastindexin A of
the corresponding element of B.

This function is obviously index origin dependent.

The equality test implied in this function uses the comparison tolerance for
numeric arguments.

(Member of) A and B can be any arrays. AeB is a boolean array the same shape
as A. Each element of AeB is 1 if the corresponding element of A occurs any-

where in B, and 0 otherwise.

The equality test implied in this function uses the comparison tolerance for
numeric arguments,

(Grade up) A “’sorting’’ function. B may be any numeric vector. A B has the
same shape as B.

A B is the permutation of 1pB such that B[A B] is in nondecreasing order. The
indices of any set of identical elements of B occur in A B in ascending order.

Since 1B is index origin dependent, so is A B. Comparison tolerance is not
used in the comparisons.

(Grade down) B may be any numeric vector. ¥ B has the same shape as B.

¥ B is the permutation of 1oB such that B[B] is in nonascending order. The
indices of any set of identical elements of B occur in ¥ B in ascending order.

Since «pB is index origin dependent, so is ¥ B. Comparison tolerance is not
used in the comparisons.

PRIMITIVE FUNCTIONS AND OPERATIONS 73

R<A?B

R<ABB

R<HB

(Deal) A random function. A and B are nonnegative integer scalars or one ele-
ment arrays, and A <B.

A?Bisavector of length A4, obtained by making 4 random selections, without
replacement, from the population ¢B.

Since B is index origin dependent, so is 4A?B. The system’s random link
parameter is used implicitly.

(Matrix divide) This function is useful in numerical work for solving systems
of linear equations, least-squares fitting problems and problems involving
projections of vectors in n-space.

A and B are numeric arrays of rank 0, 1 or 2. Scalars and vectors are shaped in-
to one column matrices. The (reshaped) arguments must both have the same
number of rows, and the columns of (the reshaped) B must be linearly indepen-
dent. (The latter implies in particular that B cannot have more columns than
TOWS.)

The definition of AE3B is deceptively brief: the shape of AEBis (11pA4),(1!pB)
and the value of AHB is such that +/,(4—B+.XAEBB) * 2 is minimized.

In particular if Bis a square, nonsingular matrix then the minimum referred to
is zero and B+.X(AEB) «— A. If A is a vector then AEIB is the vector solv-
ing the set of linear equations B+.X X «— A. If A isamatrix then AEIB gives
the solution of the set of equations for each column of A4.

It can be seen from the definition that if B is a rectangular matrix then ABB
gives the linear combination of the columns of B which most closely (in the
least-squares sense) matches A. This can be used in linear regression for curve
fitting, and in vector projection problems.

(Matrix inverse) B is a numeric array of rank 0, 1 or 2. A scalar or vector is
reshaped into a one column matrix. The columns of the (reshaped) argument
B’ must be linearly independent. (In particular, B’ cannot have more columns
than rows.)

If Nis the number of rows of the reshaped argument B’ and Zis an NX N identi-
ty matrix then BB+ —IEB’, except that if Bisa scalar or vector then theresult
is reshaped to a scalar or vector respectively.

74

R<ALB

R<ATB

Chapter 6

(Decode, or base value) This function is used to convert a coded representa-
tion, B, of a number into the number itself, according to the coding scheme or
radix A. This is one of the essential operations in number system conversions.

If A and B are vectors of equal length then ALB is a scalar equal to +/WXB
where W is a weight vector corresponding to the radix A: W+« X \$ 1i4,1.
Forexampleif A «—357then W+—3571,and3571235 «—> +/3571X2
35— 4+/70215 «— 96.

A scalar or one element vector argument is extended to conform to the other
argument. Thus211011<—2222110 11<—-+/8421X101 1+<—11.
(""The base 2 valueof 101 1is 11.”")

In the case of arguments of higher rank, each radix vector along the last axis of
A is applied to each representation vector along the first axis of B, in accor-
dance with the above algorithm. The shape of ALBis (" 11pA),(1{.B).

(Encode, or representation) This function converts a number Binto an encod-
ed representation according to the coding scheme or radix 4. This is one of the
essential operations in number system conversions.

Encode is a partial inverse of decode. For example 357796 «— 23 Swhile35
71235 «—96.

If A is a vector and B is a scalar then AT B is equivalent to the following pro-
gram. The index origin is assumed to be 1 and comparison tolerance is 0.

VR« A ENCODE B;I
[1] R<0XA 00— VECTOR,SAME SHAPE AS A
2] I<pA
3] REPEAT:
[] —(=0)/0
[5] RIN+-A[N|B
(61 —(A[]]=0)/0 QOREMEMBER: 0|B——B
7 B—(B—R[IN)+All}
(8] I~I-1
1 ~REPEAT
v

If A is ascalar then ATB——A|B.

PRIMITIVE FUNCTIONS AND OPERATIONS 75

@A
R<QA

R<0B

Inthe case of higher rank arrays, each vector along the first axis of A4 isapplied
to obtain therepresentation of each element of B, the resulting representations
being arrayed along the first axis of the result. That is,

Al;J;..;KITBIL;...;N1«~—=R[;J;...;K;L;...;N]
for all values of J,...K,L,...,N which are valid indices for 4 and B.

The shape of ATBis (0oA),(eB).

(Execute) This function executes the APL statement represented by the
character vector (or scalar) A. The value of ®A is the value of the statement, if
it has one. If the execution of 4 evokes an error report then the report of the
type of error will be preceded by Q. A system command is not an APL state-
ment and cannot be executed with Q.

Two common uses for execute are (a) passing object names, including func-
tion names, as arguments to functions, with later evaluation, and (b) conver-
ting character representations of numbers, obtained from a file, for example,
to numeric form.

Execute can make programs difficult to analyze or understand. It should be
used with restraint.

(Format) B may be any array. The result of this function is a character array
which, if displayed, would have the same appearance as if B itself were
displayed.

The system’s printing precision parameter (see L1PP)is used implicitly for for-
mat, but the printing width (see CJPW) is not: format acts as though the print-
ing width were infinite.

Format does not alter a character array argument.

For a numeric argument, the shape of ¥ B is the same as the shape of B except
for the last dimension. A scalar B is an exception: it is treated as a one element
vector.

Format is useful for mixing character and numeric data on one output display
line, and for converting data to be sent to an external file or device such as a
printer.

76 Chapter 6

R<ATB (Dyadic format) This function is similar in purpose to monadic format, but it
uses variations in the left argument to provide progressively more detailed
control over the result.

B may be any numeric array. A is an integer scalar or vector.

In general a pair of numbers is used to control the result. The first determines
the total width of a number field and the second controls the precision.

If the precision indicator is negative then E-format is used and the magnitude
of the precision indicator is the number of digits in the multiplier. If the preci-
sion indicator is nonnegative then regular decimal form is used and the value
of the indicator specifies the number of digits to the right of the decimal point.

If the width indicator is zero, a field width is chosen such that at least one space
will be left between adjacent numbers.

If A is a scalar or a one element vector it is treated like a number pair with a
width indicator of zero.

If A is a two element vector, it provides the width and precision for the entire
array B.

Otherwise A must be a vector with a pair of elements (width, precision) for
each index along the last axis of B.

-Operators

Operators in APL provide a means of modifying some of the primitive functions or of
creating whole families of new functions.

Although in many contexts the terms *’function’’ and ‘‘operator’’ are used more or less
synonymously, in APL they have quite distinct meanings. 'Function’’ is used for things
such as 4+ or € which take arrays as arguments and produce arrays as resulis. ’Operator’’ is
used for a special kind of function which takes functions and/or arrays as arguments and
produces a derived function as a resuit.

Reduction, scan, inner product, outer product and axis are the five operators available in
MicroAPL.

PRIMITIVE FUNCTIONS AND OPERATIONS 77

R+~f{/B

R~{+B

R<f{/{V]B

R+« f+£[V1B (Reduction) NOTE: The symbol for the reduction operator is /. f/ is the
mixed monadic function derived by applying reduction to any scalar dyadic
primitive function f. R+« f{/B is the syntax of the derived function.
The definition of f/B is as follows.

(a) If Bis a scalar, f/B<——B,

(b) If Bis a 0-element vector, then f/B is the ""identity element’’ for f, as
shown in Table A.3. If no identity element exists a domain error is evoked.

(c) If Bis a 1-element vector then f/B is the scalar (:0)pB.
(d) If Bisavector of length 2 or more, then f/B «— B[1] f B[2] {...f BlpB].

(e) If Bis an array of higher rank, the reduction rules (b) - (d) are applied to
the vectors along the last axis of B. The shape of f/Bis~ 1{pB.

f-£is identical to f/ except that the reduction is applied along the first axis in-
stead of the last.

The axis operator can be applied to the derived function f/ or f-+ to designate
the relevant axis.

Some common reductions are

+/ sum of

X/ product of
r/ maximum of
L/ minimum of
N ’for every’’
v/ "there exists’’

#/ parity check

78

R<f\B
R—fxB
R<f\[V]B
R—fx[V]B

R—{/[VIB
R—f+[VIB
R<f\[V]B
Rfx[V]B
R<o[VB
R<0O[V]IB
R<AG[VIB
R<A/[VIB
R<AN\[V]B
R<A,[VIB

Chapter 6

(Scan) NOTE: The symbol for the scan operator is \. f\ is the mixed
monadic function derived by applying scan to any scalar dyadic primitive
function f. R<f\ Bis the syntax of the derived function.

The definition of £\ B is as follows.

(a) If B is a scalar or a 0-element vector, f\B «— B,

(b) If Bisa vector of length 1 or morethen for everyscalar IetpB, (f \ B)[I] «—
f/Bd].

(c) If B is an array of higher rank, the scan rules (2) and (b) are applied to the
vectors along the last axis of B.

Theshape of £\ Bistheshape of B. f£isidenticalto f\ exceptthat thescanis
applied along the first axis instead of the last.

The axis operator can be applied to the derived function f \ or f> todesignate
the relevant axis.

(Axis) The axis operator, designated by the pair of symbols [and] , takes an
axis value ¥V and modifies the function to the left, usually by designating a rele-
vant axis of one of its arguments.

In all cases V' must be a numeric scalar or 1-clement vector.

Since axes are numbered relative to the current index origin, the axis value Vis
origin dependent.

PRIMITIVE FUNCTIONS AND OPERATIONS 79

R—Af.gB

R«AOgB

(Inner product) Inner product derives a new dyadic mixed function f.g from
any two dyadic scalar primitive functions f and g.

If A and B are vectors of the same length, or they are both scalars, then Af.gB
«— f/AgB.

In general, if A and B are arrays other than scalars, and 17pA4) = (11pB),
then theshapeof Af.gBis (" 1ipA),(1{pB)and (Af.gB) [[;...;J;L;...;M]«——
f /A[L...;J;] g B [;L;...;M) for all valid sets of indices.

Finally if either one of A or Bis ascalar, or if either is a 1-element vector, it is
reshaped into a vector whose length satisfies the general case above.

The inner product +.X is the ordinary '‘matrix product.’’ Other common in-
nerproductsare A.=, +.= , L.+ ,l.4+ ,and X. *.

(Outer product) Outer product derives a new dyadic mixed functionO.g froma
dyadic scalar primitive function g.

Theshape of AC.gBis (0A),(pB) and (4A0.gB)[I;...;J;L;...;M) «— A[lL;...;J1g
B[L;...;M] for all valid sets of indices. (If 4 or B is a scalar, the index expres-
sion is omitted.)

80

Chapter 7

System Variables and System Functions

System variables and system functions provide facilities for communicating with the APL
System. Unlike system commands they can be used within APL expressions.

System names are distinguished: they all start with [J or (7.

System variables and functions are always in your workspace, but they do not appear in
)ENS and)VARS lists. They cannot (and need not) be copied or erased. Some of them can
usefully be localized in function definitions: (11O is the most common example.

The difference between system variables and system functions is mainly a matter of their
syntax.

System Variables

System variables are best viewed as variables which you share with the APL system. You
can’t do anything to or with a system variable without the system taking some notice.

‘When you use a system variable in an expression the system generates and supplies the
value. For example CJWA returns the working area available, but the system has todo a
storage reorganization and cleanup to get that value.

SYSTEM VARIABLES AND SYSTEM FUNCTIONS 81

Conversely, when the value of a system variable is specified, the system may automatical-
ly adjust one of its internal parameters. For example [170+0 results in the internal index
origin parameter being set to 0. Often there is a limited set of acceptable values for an inter-
nal parameter, and the system will appear to ignore an attempt to give the corresponding
system variable an unacceptable value.

acr

aro

OLx

arp

oprw

ORL

aLc

Comparison tolerance. Controls the internal comparison tolerance
parameter. Acceptable values: 0 through 1E™ 5. Value in a clear workspace:
1E~ 8.

Index origin. Controls the internal index origin parameter, which is used in in-
dexing, the axis operator, [JFX,?, dyadic ,4,¥ and ¢. It is the index of the
first element of any nonempty vector. Acceptable values: 0 or 1. Value in a
clear workspace: 1.

Latent expression. When a workspace is loaded, [1LX is executed. Valuein a
clear workspace: an empty vector.

Printing precision. Controls the parameter which determines the number of
significant digits in the output representations of numeric APL arrays. Accep-
table values: integers 1 through 11. Value in a clear workspace: 8.

Printing width. Controls the parameter which is the maximum width of a line.
Affects all output except bare output ((J). Acceptable values: integers 24
through 80. Value in a clear workspace: 80.

Random link. Used in roll and deal(?). Acceptable values: integers 1 through
32767.

Atomic vector. A 256 element vector of the bytes whose hexadecimal represen-
tations are $00,$01,...,$FF in ascending order. Thus, in origin 1, (DA V[17] is
equivalent to $10. The elements of character variables are all elements of CIAV
and any element of CJA ¥V can be used in a character variable. The value of
[JAV cannot be altered.

Line counter. A vector of the line numbers of active functions, most recently
initiated first. CJLC cannot be altered by assigning values to it.

82

grc

ars

owA4

Chapter 7

Terminal control. An 8 element character vector whose elements have the
following effects when output to the screen.

arcmny move cursor left
OTCr2} move cursor right
arci3y move cursor down
Orci4) move cursor up
OTCI5) clear screen and home cursor
aTcre] home cursor to top left hand corner
arcm RETURN ("’ new line’")
OTcrs) Erase to end of line
0JTC cannot be altered.

Timestamp. Used for setting and reading the internal system clock. A six ele-
ment integer vector representing the date and time as follows:

arsiiy Last two digits only of the year

aTsi2] Month (1 through 12)

OTs[3) Day (1 through 31, consistent with month and year)
ars[4 Hour (0 through 23)

1TS[5) Minute (0 through 59)

arTsie] Second (0 through 59)

Acceptable values: representations of valid dates and times in the above for-
mat.

(7S may be set at any time. The system will then keep its clock up to date.
The system clock is not kept in the workspace, so loading a new workspace
does not affect it.

Working area. Available space in the active workspace in bytes. [1WA4 cannot
be changed by assigning it a value.

Evaluated Input/Formatted Qutput. When [is assigned a value, the system
displays a representation of the value on the screen. (JPPand COPW affect the
display. A vector which cannot be displayed within the printing width is con-
tinued, indented on subsequent lines. Rows of a matrix are displayed as
separate vectors. One line is skipped between the matrices of a 3-dimensional
array, two lines between 3-dimensional subarrays and so on. E format is used
automatically when necessary for numeric arrays.

SYSTEM VARIABLES AND SYSTEM FUNCTIONS 83

When a value for [1is required, the system generates its value by obtaining it
from the user: a prompt ({1:) is displayed and the user must enter an expression
to be evaluated, or — (see "Punt’’). The value of the expression is the value of
O.

Character Input/Bare Qutput. When [is assigned a character scalar or vector
value, the system sends the characters to the screen in a continuous stream
without gratuitous newline characters. This is useful and often necessary when

you wish to display long strings containing cursor positioning characters (see
are).

When a value for [J is required, the system generates the value as it does for
[Jexcept that (a) there is no prompt: the cursor simply remains where it is, and
(b) the input is taken as a vector of characters and is not evaluated. Trailing
blanks are trimmed off and the result is always a (character) vector.

Program function key 2 (i.e., shifted "’2’* on the numeric keypad), as a
response to {J or [J input, is equivalent to a "punt.”’

NOTE: Because a machine awaiting character input looks just the same as a
machine locked in along calculation (the cursor is at the left margin), it is good
practice to include your own prompt in your programs. [J output followed
directly by [input is a neat way of doing this on one screen line.

System Functions

OOCRF

ODL §

OEX A

Canonical representation. F is a character vector (or scalar) naming a func-
tion. The result is a character matrix containing a representation of the func-
tion. The representation is similar to that displayed by the V — editor, but
without V' s or line numbers. The result is of shape 0 0 if F does not denote an
existing function.

Delay. Sis a positive integer scalar. This function takes S seconds to complete.
The result is the length of the delay, namely S.

Expunge. A is a character scalar, vector or matrix. Any variables or functions
named by the rows of A are erased, if possible. The explicit result is a boolean
vector whose I' th element is 1 if the I’ throw of A denotes aname which is now
available for use, whether or not an object by that name was erased.

84

OFX M

ONC A

ONL K

LONLK

OSTOP F

Chapter 7

Fix. M s a character matrix representing a function definition in the same for-
mat as the result of (JCR. [JFX establishes the definition if possible. The ex-
plicit result is a character vector naming the function established, or else the in-
dex (relative to the current index origin) of the first row of M containing a fault
which prevented establishment. The name of the intended function cannot be
in use, except as a function name.

Name classification. A4 is a character scalar, vector or matrix. The resultisa
vector of name classifications giving the usage of the character sequences in
each row of A

: a name available for usage

: alabel

: avariable name

: adefined function name

: other (a distinguished name, or not a name)

HSWN=O

Name list. K'is a numeric scalar or vector with elements 1,2 or 3. Theresultisa
character matrix whose rows name the objects in the indicated classes which
existin theactive workspace: 1, 2 or 3 for labels, variables or functions, respec-
tively.

Name list. L is a character vector or scalar. The result is like that of monadic
CINL but the list contains only names beginning with one of the letters in L.

F is a character (scalar or) vector naming a function. The result is an integer
vector of line numbers on which ‘’stops’’ have been placed.

NOSTOPF

F is a character (scalar or) vector naming a function. N is a vector of line
numbers. "’Stops’’ are set on the lines of the named function whose numbers
appear in N (See Stop Control for the effect of a stop). An empty vector N
removes all stops. Editing a function removes all its stops.

NOTRACEF
LITRACE F Similar to LISTOP but for ""traces’’ instead of *‘stops.”’

O0LOAD W W is a character vector naming a workspace. (JLOAD is identical to)LOAD

but it may be executed as an APL statement.

SYSTEM VARIABLES AND SYSTEM FUNCTIONS 85

OPEEK V

Viseither (a), a scalar or vector of integers defining machine addresses, or (b),
a2-column matrix of integers whose rows define ranges of machine addresses.
The ranges are inclusive.

The result is a character vector (i.e., of elements of [14¥) containing the
current contents of the machine addresses defined by V.

N.B. The machine addresses are interpreted as in origin 0, regardless of the
current index origin.

Examples
(1) CIPEEK 0is the current contents of hexadecimal location 0000. The only
reliable way to ‘’see’’ the value is to look it up in 0AV: DA VIDPEEK 0 pro-

duces an integer result in the current index origin.

(2) LJPEEK 32768 32769 is the contents of the first 2 locations on the screen
(Hexadecimal 8000-8001).

(3) (OPEEK 1 2 432768+0 1999 is the entire screen. (Hex 8000 - 87CF).

CUOPOKEV

asysc
ALSYSC

V is a scalar, vector or range matrix, as in (JPEEK. C is a character vector
whose length is consistent with V. A scalar Cis extended to be consistent with
V.

Example C0JAV OPOKE 1 2p32768+0 255 will show the result of storing all
possible byte values into screen memory.

NOTE: It is sometimes important to know that the assignment of bytes to ad-
dresses occurs “'from left to right”’ in CJPOKE.

Execute 6809 machine code. The machine code (i.¢., instructions) contained
in, or pointed to by, C is executed.

C is either

(1) ascalar or one element vector integer between 0 and 65535, representing
the machine address at which execution is to begin, or

(2) a character (scalar or) vector of bytes to execute directly.

Control is returned to APL by executing a 6809 RTS instruction.

86

OXR C

OIRC

Chapter 7

The explicit result of LISYS is an integer scalar representing the value of the
6809 D register at the time of returning.

A isanoptional parameter list. If present it must be a (scalar or) vector of in-
tegers between 0 and 65535. The two-byte value represented by the first ele-
ment of A is placed in the 6809 D register before execution begins, and the re-
maining elements are placed on the stack (two stack bytes for each element).
The top pair of bytes on the stack contain the return address (i.e., of APL’s
(OSYShandler). The second pair correspond to A[2], the third pairto A[3] and
so on. In each pair the low order byte is stacked first.

Thestack may be used by the machine language routine, but it must beleftin
this same condition again when the RTS instruction is executed to return to
APL.

External representation. Translates APL characters to ""APL-ASCII Overlay
(Typewriter-Pairing)’’ representation. C is a (scalar or) vector of APL
characters or elements of [JTC. The result is a character vector formed by
catenating the representations of the elements of C according to the APL-
ASCII typewriter pairing convention (see appendix). Overstruck elements of
C are expanded into the two constituent characters separated by a backspace
character.

Internal representation. [1JR and [1XR are strict inverses except that /R will
handle either of the two possible permutations corresponding to the
overstruck symbols.

There are more system functions in MicroAPL. These all concern files and are included in
a subsequent chapter.

87

Chapter 8

Errors

If an error is detected in the execution of a statement, an error report is displayed. This
report consists of an error message followed by a display of the statement. The point at
which execution was interrupted is marked by a caret (A). Any implicit results, such as
variables having been assigned values, which occurred before the point of error, remain in
effect.

Error Messages

SYNTAX ERROR
A line of APL characters is not a valid statement.

VALUE ERROR
An expression with no value occurs in a context requiring a value. The use of a
variable before it has been assigned a value is a common cause of this error.

DOMAIN ERROR
The argument or arguments of a primitive function are not within its domain
of definition. Generally speaking, RANK and LENGTH errors arerecognized
first if possible.

88 Chapter 8

RANK ERROR
The rank of an argument of a function does not meet the requirements of the
function, or the ranks of the left and right arguments do not conform.

LENGTH ERROR
The argument ranks conform, but the sizes of one or more axes do not.

INDEX ERROR
(1) The value of an index expression is an invalid index for the associated ar-
ray. (2) An invalid axis number is specified in an axis operator.

CHAR ERROR
Certain keys are invalid in APL and evoke a character error report when
struck.

SYMBOL TABLE FULL
Too many names have been used. Save the workspace; clear and copy the en-

tire workspace. (The symbol table size may be changed in a clear workspace
with the)SYMBOLS command.)

WS FULL
Out of memory. Clear the state indicator by executing — sufficiently many
times. Erase unnecessary objects.

SYSTEM ERROR
Fault detected in the APL system.

DEFN ERROR
This error is dealt with in the chapter on defined functions.

89

Chapter 9

Files

A file in the APL system is viewed as a collection of items external to the APL workspace.
These files can be created, added to, retrieved from, erased and renamed through the use of
special APL system functions.

There are four types of files:
a) APL-sequential
b) BARE-sequential
¢) Relative
d) Program
An APL-sequential file is simply a sequence of APL values of any shape, rank and type.

A BARE-sequential file is a sequence of 8-bit binary characters.

A Relative file is a sequence of 8-bit binary characters which are organized into fixed sized
groups called ‘records’ which may be accessed in random order.

A Program file is a special kind of BARE-sequential file normally used to contain pro-
grams and workspaces. As such, it is not usually accessed with the techniques discussed in
this chapter.

90 Chapter 9

General Concepts:

Files reside on some external medium and are identified by a name. Filenames are con-
structed according to specific rules described below.

In order for the data in a file to be available to a workspace, it must be "tied”’ to the
workspace with a tie-number. Information is transferred to and from the file using this
number. When access is not required by the workspace, the file can be *'untied.”

Filenames:

The filenames of APL-sequential and BARE-sequential files are composed of any combina-
tion of letters and numbers (see Systems Overview Manual) (e.g., the name of a disk file can
contain up to 15 characters). The following are valid filenames for sequential files:

GEORGE
INVENTORY.NOV
SALES004

The filenames of Relative files are somewhat more detailed than those of sequential files.
The basic filename is formed by following the same rules as above. However, special addi-
tions are also required in the name. The meaning of the special sequences are described later
in the section titled "’Relative Files.”’ The following are valid names for Relative files:

V~(45AGEORGE,REL
V~(@BOAINVENTORY.NOV,REL
V ~(200ASALES004,REL

Replies:

The file operations described in the rest of this chapter frequently return replies which
reflect the result of the operation. The reply is in the form of a character vector which con-
tains text describing any abnormal condition encountered. If the operation was successful,
the reply is an empty vector.

FILES 91

General File Manipulation Functions:

REPLY « FNUICREATEN

FNis acharacter vector containing the name of a file which is to be created. Ifa
file with the same name already exists, it is replaced. The argument N is an in-
teger scalar specifying the '‘tie-number’’ to be used. Output operations such as
OWRITE or OPUT are valid.

REPLY « FNOTIEN

This function is used to access an existing file. The file specified by FN is
located and attached to the workspace with the tie-number given by the integer
scalar N. Only input operations such as [JREAD or JGET are valid on a file
accessed in this manner.

REPLY « FNUAPPEND N

This function is used to add items of data to an existing sequential file. The file
specified by FNis located and attached to the workspace with the tie-number
defined by the integer scalar N. Only output operations such as OWRITE or
OPUT are valid here.

REPLY +~ FNUIUPDATEN
This function is used to access existing relative files. FN specifies a file which is
located and attached to the workspace with tie number N. Data can be sent to
and retrieved from the file using the functions [JREAD, UJGET, CIWRITE
and [IPUT.

OUNTIEN

The argument N is an integer vector containing tie-numbers of files to be
released from the workspace.

92 Chapter 9

REPLY <« FNUERASEN

The file named in FN is erased. N is an integer scalar representing the tie-
number of the currently tied file to be erased.

REPLY <~ FNORENAMEN

The argument N is an integer scalar specifying a currently tied file. This file is
renamed to the name defined in the argument FN.

ONUMS

This function returns a vector of all currently active tie-numbers. Their order
corresponds to that of the filenames returned by the function OINAMES.

ONAMES

This function returns a character array of the names of all currently tied files.
Their order corresponds to that of the tie-numbers returned by the function
LONUMS.

REPLY « USTATUSN

The argument N is an integer scalar representing a file tie-number. The func-
tion response reflects the status of the most recent operation performed on the
file with the specified tie-number.

Z+[LIB L Lisacharacter vector designating a device (e.g., ‘'DISK/1’), or an empty vec-
tor. Z is a character matrix representing the directory for the device. (ASCII
characters are not necessarily translated to APL.)

APL Sequential Files

APL-sequential files are a sequence of APL values of any shape, rank or type. Such files are
accessed using (ICREATE, UITIE, DJAPPEND and CDUNTIE. Values are written into the
file using OOWRITE and read back into the workspace using CJREAD.

REPLY < ZUOWRITEN

Zisany APL variable and Nis aninteger scalar. Therank, shape and type of Z
as well as all of its data are put on the file tied with number N.

FILES 93

Z < UJOREADN

The 'next’ item in the file tied with number N is read into the workspace and
assigned to the variable Z. The variable assumes the shape, rank and type of
the data value from the file.

BARE-Sequential Files

BARE-sequential files are a sequence of 8-bit binary values (called bytes). These files are ac-
cessed using [ICREATE, UITIE, (JAPPEND and [JUNTIE. Bytes are written to the file
from APL character variables using JPUT and read back into the workspace using JGET.

REPLY « ZOPUTN

The argument Z is a character vector and N is an integer scalar representing a
tienumber. Character data from the specified vectoris written to the file. Each
byte from the item is transmitted to the file and no additional bytes are added.

Z <« [JGETNL
NL is a2-element integer vector. The first element contains the tie-numberof a
currently tied file. Character data from the file is transmitted to the workspace
and stored in Z as a character vector. The number of bytes transmitted is
specified by the second element of NL. If there are too few bytes left in the file,
only those available will be transmitted.

Relative Files

A relative file is composed of '‘records,’’ each of a fixed size. The record size is defined as
part of the filename when the file is created (using JCREATE). This is done by prefixing the
name with the sequence vV ~ (WNA where NN is the desired record length. The name must
also be suffixed by the sequence ,REL. (The cryptic sequence is the APL equivalent of the
ASCII codes required by the disk system.)

e.g., to create arelative file named SAMPLES with records of length 100, use
the filename

V ~(100ASAMPLES,REL
Relative files are accessed using (JCREATE, (ITIE, (JUPDATE and CJUNTIE. Opera-

tions on relative files are performed on individual records, so [JGET and (JPUT must be
preceded by the [JSEEK operation positioning the file-system to a specific record.

94 Chapter 9

REPLY « USEEK NL

NL is a 2-element integer vector. The first element is the tie-number of a cur-
rently tied relative file. The file system positions its ""current-record’’ pointer
to the I’th record in the file where 1 is specified by the second element of the
vector NL. If the record does not exist, a reply is returned to that effect. This
reply can usually be ignored when the file is being written.

NOTES:

1 An attempt to write more characters than will fit on a record will result in an I70
ERROR.

2 An attempt to read more characters than are on one record will cause characters to

be read from the next record.

3 The maximum record length in a relative file is 254 bytes.

95

Appendix A

Tables of Functions

Table A.1 - Primitive Monadic Scalar Functions

Symbol

G*—lf—

Name

Conjugate
or identity
Negative
Signum

Reciprocal

Floor

Ceiling
Exponential
Natural logarithm

Magnitude or
absolute value
Factorial

Definition or Example

+B «— 0+B

—B «— 0—B

XB «— " 1if B<0
0 B=0
1 B>0

+B «— 1+B

13.1473.14 >3 4

3.147 3.14«<—> 4" 3

*B «— (2.7128...)*B «—> ¢*B
@B «—¢c¢®B

13.14 73.14 «— 3.14 3.14
§0—1
4B - BX§(B-1)

Page

62
62
62

62

62
62
62
62

62
62

96 Appendix A

Symbol Name Definition or Example Page
? Roll 7B +— Random choice from (B 63
o Pi times OB +— BX3.14159... 62
~ Not ~01«—=10 63

Table A.2 - Primitive Dyadic Scalar Functions

Symbol Name Definition or Example Page
+ Plus 2432 «—52 63
- Minus 2=32¢—-" 12 63
X Times 2X3.2 «—> 64 63
- Divide 2+3.2 «— 0.625 63
L Minimum 37 «—3 63
) Maximum 37 <=7 63
* Power 2%3 «—> 8§ 64
® Logarithm A®B «— Log B (base A) 64
A®B «— (®B)+®A
| Residue A|B<—B if A=0 64
A|B «~— B—AXIB+A if A
4 Binomial AéB «—> ({B)=(§ A)XEB—-A 64
coefficient 265> 10 345«<—10 64
A B AANB AVB AAB A¥B
A And 00 O 0 1 1 64
Y/ Or 01 0 1 1 0 64
A Nand 10 0 1 1 0 64
L 4 Nor 11 1 1 0 0 64
< Less 64
= Not greater Result is 1 if the 64
= Equal relation holds, 0 64
= Not less if it does not: 64
> Greater 37 -1 'A'#3 «— 1 64
* Not equal 7=3«-=0 ‘B'='B'+— 1 64
o Trigonometric Restrictions
A R+AOB Domain Range
7 tanh B

6 cosh B

TABLES OF FUNCTIONS

>

R<ACB

sinh B
(1+B*2)* .5
tan B

cos B

sin B
(1-B*x2)*.5
arcsin B
arccos B
arctan B

C 14B*2)* .5
arcsinh B
arccosh B
arctanh B

The angular measure is radians.

Domain Range

B=1 0=R

(B)=1 (IR)=0+2

(B)=1 (O<R)A(R=OI1)
(|[R)<0O+2

1<|B 0<R

1<B 0<R
(By<1

Table A.3 - Identity Elements of Dyadic Scalar Functions
(see Reduction)

DYADIC SCALAR FUNCTION

VN HANALLDPLS<>SNO0O@*r—— | X | +

IDENTITY ELEMENT
0
0
1
1

0
The largest representable number.
Greatest (in magnitude) negative no.
1
None
None

97

98

A.4 - Table of Mixed Primitive Functions
In the following table the *’syntax’’ column indicates the highest rank of the arguments. §
: scalar; V': vector; M : matrix; A4 : any array. Generally, lower rank arguments are accep-

table.

Arrays used in the examples:

Ne—34p12 «— 1

C +— 2p°"ABCDEF +— AB

Syntax

pA

VpA

dA

AdA

Name

Shape

Reshape

Ravel

Reverse

Rotate

2 3 4

6 7 8
9 10 11 12

CD

EF
Examples
pC > 32
p2357 =>4

p1 <= <empty vector>

34p112 > N

4pC +~— "ABCD’

0p2 3 7 «— <empty vector>
(0)pC «— "4’

SN <= 12
»1 &= 1p7

dC - BA
DC
FE
d[1]C «— EF
CD
AB
$2357«<>7532

10 'WORDS' «— 'SWORD'
120 [1]IC «— CF

EB

AD

Appendix A

Notes Page
65
65
65
1 65
1 66

TABLES OF FUNCTIONS 99

Syntax Name Examples Notes Page
AA Catenate 3472134721 1 66
C,'XYZ +~— ABX
CDY
EFZ
A,[VIA Laminate ‘CAT,[0.51'DOG’ «~— CAT 1 67
DOG
'CAT,[1.5]’DOG’ «— CD
A0
G
veAa Dyadic p312 Q(235030) «—352 2 68

Transpose 11 QN+«—1611

QA Transpose QC «— ACE 68
BDF

Via Take 235757 69
412342340
21tC«—> A4
(o)

ViA Drop 2VEXAMPLE' «— 'AMPLE’ 70
TH357«-35
T2THC e 1 1A’

v/A Compress 101/235«—25 1 70
01 1/[1]C «- CD
EF
¥\A Expand 110\57 =570 1 71
10INC+— AB
CcD
EF
127 Indexing ‘EXAMPLE'[4 3 5] «— 'MAP’ 2 68
MIA;A) 'ABCDEFGHIJKL'[N]+—ABCD
AlA;...;A) EFGH
KL
C[3 2;} «— EF

CD

100 Appendix A

Syntax Name Examples Notes Page
AlA;...;Al<A
Indexed Cl;}+—='PQ'—— C+— PQ 2 69
assignment CD
EF
S Index 3=+ 123 2 71

generator 10— <empty vector>

ViA Index of 'ABCD'/'C' «— 3 2,3 72
'SOUSVCS «+— 51
'"ABCD'\C+«—>12

34
55
AeA Member of ‘CATeC «<—110 3 72
Ce'CABBAGE’ +— 11
10
10
AV Gradeup A6862<—4132 2 72
6862[A6862]——2668
\24 Gradedown ¥5316+-—-4123 2 72
5316[y5316]<—6531
S?8 Deal 3715 «~—=341 73
325+~—145
BMm Matrix BE221101—>1"1 73
inverse 01
30XEH125 «—125
H5«<—0.2
MEM Matrix 25EH2201101<->" 35 73
divide
AlA Decode 10L1867<—1867 74

246060L15 50 10+—57010

TABLES OF FUNCTIONS

Syntax Name Examples
ATA Encode 8p2)T13<—=00001101
24 60 60756999 —15 49 59
eV Execute Q3+4" <7
Q'C’' «— AB
CD
EF
TA Format PON——3 12
5.7 1.2«-'57" 1.2
Ce-C
VDA Dyadic 520(+123)«—'1.000.500.33"
format 97 4T(+T7)——'1.429E 01"
4 20(~+3 1p3)«~— 1.00
0.50
0.33
NOTES:
1 Axis operator is allowed. (Axis is always index origin dependent.)
2 Index origin dependent.

3 Comparison tolerance dependent.

Notes

101

Page

74

75

75

76

102

Appendix B

System Commands, Variables and Functions

B@]-System Commands

JLIB
YCLEAR
YWSID
)SAVE
YLOAD
YCOPY
)DROP
)ENS
)VARS
)ERASE
)SI
)SINL
YOFF

)SYMBOLS
YWSLIMIT

Report names of saved ws’s and files
Activate a clear ws

Change or report wsid

Save a copy of the active ws

Load a copy of a saved ws

Copy named objects from a saved ws
Erase a saved ws

Report names of functions in active ws
Report names of variables in active ws
Erase functions or variables in active ws
Display state indicator

Display state indicator and local names
Discontinue APL

Report or change symbol table size
Report or change limit of memory used for ws

2 RRRRRR

>
W

SYSTEM COMMANDS, VARIABLES AND FUNCTIONS

B@®2-System Variables

d4v
gcr
aro
grc
OLx
orPpP
orw
ORL
garc
ars
OwA
0

1}

Atomic vector

Comparison tolerance

Index origin

Line counter

Latent expression

Printing precision

Printing width

Random link

Terminal control

Timestamp

Working area

Evaluated input; formatted output
Character input; bare output

B@3—System Functions (Non-files)

OCR
0ODL
OEX
OFX
aNc
ONL

OPEEK
OPOKE
f1sYs

OTRACE
asTop

OIR
OXR

Canonical representation

Delay

Expunge (erase)

Fix (establish) a function

Name classification for given list
Name list for given classification

Read bytes from memory
Write bytes into memory
Execute machine code

Change or report trace settings
Change or report stop settings

Translate to internal representation
Translate to external representation

B@®4-System Functions (Files)

UOLOAD

{ICREATE
OAPPEND
OTIE

DOUPDATE

Load ws

Open a file for (re)writing
Open a file for appending
Open a file for reading

Open a relative file for update

103

Page

81
81
81
81
81
81
81
81
82
82
82
82
83

Page

83
83
83
84
84
84

85
85
85

84
84

86
86

Page

91
91
91
91

104

B ®4-System Functions (Files)

OUNTIE
OERASE
ORENAME

OWRITE
OREAD

OorPUT
OGET

OSEEK
OSTATUS
ONAMES
CONUMS

aLiB

Close file(s)
Erase a tied file
Rename a file

Write APL array to file
Read APL array from file

Put characters to file
Get characters from file

Adjust position in relative file
Report status of a file
Report names of open files

Report tie numbers of open files

Report names of saved ws’s and files

Appendix B

Page
91
92
92

92
93

93
93

94
92
92
92

92

105

Appendix C

Character Code Tables

C®1 - APL-ASCII (Typewrite-Pairing) Overlay

0-% 1—%x 2— 3— 4— 5— 6— 7—
—0 NULL ¥] - * o P
—1 HOME A - 1 a ? A (0]
—2 RUN ¢) 2 L P B R
-3 STOP Q < 3 n r c s
—4 DEL e < 4 L ~ D T
-5 INST ® = 5 € i E U
—6 EEOL 4 > 6 — V) F 14
—7 CRFWD @] 7 v w G w
—8 CRBCK B v 8 A o) H X
—9 TAB S A 9 ¢ 1 I Y
—A CRDWN + # (o C J z
—B CRUP (o] - [’ - K {
—C CLEAR] , ; O - L —
—D CR l + X [- M }
—E L4 B . : T = N $
—F A I / \ o - o RUB
*NOTE:

These columns contain extensions to the standard APL-ASCII typewriter-pairing con-
vention,

106 AppendixC

Ce2 - TERMINAL Character Set

0— 1— 2— 3— 4— 5— 6— T—
—0 NULL 0 @ P ¢ P
—1 HOME ! 1 A Q a q
—2 RUN " 2 B R b r
—3 STOP # 3 C S ¢ s
—4 DEL $ 4 D T d t
—5 INST % 5 E U e u
—6 EEOL 6 F \'4 f v
—7 CRFWD ’ 7 G W g w
—8 CRBCK (8 H X h X
—9 TAB) 9 I Y i y
—A CRDWN * : J Z] z
—B CRUP + ; K [k {
—C CLEAR , < L N\ 1 |
—D CR* — = M 1 m }
—E . > N ~ n ~
—F ® ? o _ o RUB
* NOTE:

On output, CR also causes an automatic skip to new-line.

107

CHARACTER CODE TABLES

C®3—ASCII Character Set

Q O

O

@4nm

NULL DLE

—0
—1
—2

? w3 > B K N e e—aa]

QO O U BT e e M= B

NEHDPBEXUNN—/ <

OARMKOIMm=mmMJIS2Z

TN O~00 O eVl A

o0 mZomo
039
SEEFLEEEL PY Y
®EkOM O

o B o o
ERA<IBAC5ERES

RUB

us

St

108 Appendix C

C@4 - Internal Character Representation

0— 1— 2— 3— 4— 5— 6— T—
—1 A I (0] Y 5 - e il
—3 B J R V4 6 p /)
—5 C K S — 7 # + ?
—17 D L T 0 8 (0] \ ~
—9 E M U 1 9 ‘ ac +
—B F N 14 2 Q Q T -
—D G o w 3 A . 1 X
—F H P X 4 v ¢ € =
...cont’d

8— 9— A— B— c— D— E—~ F—

—1 r A # : v §) O CRFWD
—3 L » : o I CRDWN
—5 * A (" O $ CRUP
-7 ® <) - (4} - CLEAR
—9 | < ° o) c - HOME
—B ¢ = . - o) { CR
—D o] = [a n } EEOL
—F v > 1 v A A CRBCK
NOTE

1 Since only odd-numbered entries have meaning, only those are shown here.

Commodore Magazine

This bi-monthly magazine, published by Commodore, provides a vehicle for sharing the
latest product information on Commodore systems, programming techniques, hardware
interfacing, and applications for the CBM, PET, SuperPET, and VIC Systems. Each issue
contains user application features, columns by leading experts, the latest news on user
clubs, a question/answer hotline column, and reviews of the latest books and software.

The subscription fee is $15.00 for six issues per year within the U.S. and its possessions,
and $25.00 for Canada and Mexico. Make checks payable to COMMODORE BUSINESS
MACHINES, and send to:

Editor, Commodore Magazine
Commodore Business Machines, inc.
681 Moore Road

King of Prussia, PA 19406

The Transactor

The Transactor, which is a monthly publication of Commodore-Canada, is primarily a
technical periodical, containing pertinent hardware and software information for the
CBM, PET, VIC, and SuperPET systems. Each issue features product reviews, hardware
and software evaluations, and programming tips from the finest technical experts on
Commodore products. Additionally, The Transactor contains general information such
as product updates and trade show reports.

The subscription fee is $10.00 for six issues within Canada and the United States, and
$13.00 for all foreign countries. Make checks payable to COMMODORE BUSINESS
MACHINES, INC. and send to:

Editor, The Transactor
Commodore Business Machines, inc.
3370 Pharmacy Avenue
Agincourt, Ontario, Canada M1W 2K4

APL isa powerfuland concise programming language which is ideally
suited for the analysis of financial, statistical and engineering data,
database applications and data communications. One of its chief
characteristics is the speed with which computer applications can be
developed, and the ease with which existing programs may be
modified. The language enjoys a high degree of standardization.

Waterloo microAPL follows closely IBM’s internal standard of APL.
All the standard language features consistent with a single-user
environment are included.

Features and Extensions
B All the standard primitive functions and operators

B No limitations (other than workspace size) on array ranks
or shapes

Up to 80-character names

Direct, fast screen access and cursor control
Full-screen editing

Blanks retained in defined functions for readability
Ability to read and modify memory

Ability to execute machine language functions
Sequential files of APL arrays

Arbitrary sequential files

All system functions for function establishment, canonical
representation, latent expression, etc.

This manual is presented in two parts: a tutorial introduction to
microAPL and a comprehensive reference manual. Appendices are
included which contain summaries of the language primitives and
system features.

DISTRIBUTED BY

Howard W. Sams & Co., Inc.

4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46268 USA

$9.95/21907 ISBN: 0-672-21907-7

